The problem with what is taught in schools

Many people have written on the problem of what is taught in schools and why children don’t like what they study. One of the major issue seems to be there is no direct relevance to what children are taught in the school and their own personal and social lives. The content in the school textbooks has been dissected of any meaningful connections that the children could make in their real lives. The school tasks are decontextualised so that they become insulated from the real world. The quote below very nicely captures what I wanted to say on this issue.

These kinds of situated-learning tasks are different from most school tasks, because school tasks are decontextualized. Imagine learning tennis by being told the rules and practicing the forehand, backhand, and serve without ever playing or seeing a tennis match. If tennis were taught that way, it would be hard to see the point of what you were learning. But in school, students are taught algebra and Shakespeare without cognitive apprenticeship being given any idea of how they might be useful in their lives. That is not how a coach would teach you to play tennis. A coach might first show you how to grip and swing the racket, but very soon you would be hitting the ball and playing games. A good coach would have you go back and forth between playing games and working on particular skills – combining global and situated learning with focused local knowledge.

Allan Collins – Cognitive Apprenticeship (The Cambridge Handbook of the Learning Sciences)
Papert too has some nice metaphors for this, and constructionism hence includes problems or projects which are personally meaningful to the learner so that they are contextualised withing the lives of the learners..

Book Review: Ages in Chaos by Stephen Baxter

Ages in Chaos is a scientific biography of James Hutton by Stephen Baxter. Hutton was a Scottish scientist who also played his part in Scottish enlightenment. Hutton was the first to speculate on the idea deep time required for geological processes at the end of 1700s arguing with evidence he collected. He was trained as a medical doctor, practiced farming for 10 odd years and had continued his explorations of geology throughout. The prevalent theories of geology, called Neptunists, posited that water was the change agent. Hutton on the other hand posited that it was heat which was responsible for changes, hence Vulcanists. Also, another thing was that of time needed for this change. As others of his era, Hutton was deeply religious, like Newton, wanted to find evidence for creation as per bible.
During his time, especially popular was the idea of flood as per Bible, while the Earth was literally considered to be 6000 years old. This created a problem for Hutton, who was labelled to be atheist and heretic for suggesting that Earth is much older and that there was no design. But Hutton was a conformist and wanted to find a uniform evidence for all observable aspects. He was not like a modern scientist, as he is painted many times. The ideas were vehemently attacked on each point. Though he went to the field to find geological examples for this theory. James Watt, Black and John Playfair were his friends and provided him with evidence in the form of rock samples. During his lifetime, Hutton’s ideas will not find much audience. But due to his friends, his ideas sustained a a barrage of criticisms. Only in the next generation with Lyell this work would find acceptance. This idea of a deep time was crucial in formation Darwin’s theory.
The book reads well mostly, but at times a complete lack of illustrations in the forms of geological artefacats and maps (of Scotland) makes it difficult to read well.

Book Review: Pendulum: Léon Foucault and the Triumph of Science by Amir D. Aczel

The book traces Leon Foucault’s ingenious approach to solving the problem of providing a terrestrial proof of rotation of the Earth. The pendulum he devised oscillates in a constant plane, and if properly engineered (as he did) can actually show the rotation of the Earth. The demonstration is one the most visually impressive scientific experiments. Also, Foucault gave prediction, an equation which would tell us how the pendulum will behave at different parts of the Earth. The pure mathematicians and physicists alike were taken aback at this simple yet powerful demonstration of the proof which eluded some of the most brilliant minds, which includes likes of Galileo and Newton. Rushed mathematical proofs were generated, some of the mathematicians earlier had claimed that no such movement was possible. That being said, Foucault was seen as an outsider by the elite French Academy due to his lack of training and degree. Yet he was good in designign things and making connections to science. This was presented to the public in 1851, and the very next year in 1852 he created another proof for rotation of the Earth. This was done by him inventing the gyroscope.. Gyroscope now plays immense role in navigation and other technologies. Yet he was denied membership to the Academy, only due to interest of the Emperor Napolean III in his work in 1864. The pendulum is his most famous work, but other works are also of fundamental significance.

  • He was first person to do photomicrography using Daguerreotype
  • Accurate measurment of speed of light using rotating mirrors –
  • Devised carbon arc electric lamp for lighting of micrcoscope
  • One of the first to Daguerreotype the Sun
  • Designed the tracking systems used in telescopes
  • also designed many motors, regulators to control electrical devices

There are a couple of places in the book where Aczel seems to be confused, at one point he states parallax as a proof for rotation of Earth around its axis, whearas it is more of a proof of Earths motion around the Sun. At another place he states that steel was invented in 1800s which perhaps he means to say that it was introduced in the west at the time. Apart from this the parallels between the rise of Napoleon III, a Nephew of Napolean, to form the second Empire in France and Foucault’s own struggle for recognition of his work and worth is brought out nicely.