What if someone told you that learners in high-school don’t actually need calculus as a compulsory subject for a career in STEM? Surely I would disagree. After all, without calculus how will they understand many of the topics in the STEM. For example basic Newtonian mechanics? Another line of thought that might be put forth is that calculus allows learners to develop an interest in mathematics and pursue it as a career. But swell, nothing could be farther from truth. From what I have experienced there are two major categories of students who take calculus in high school. The first category would be students who are just out of wits about calculus, its purpose and meaning. They just see it as another infliction upon them without any significance. They struggle with remembering the formulae and will just barely pass the course (and many times don’t). These students hate mathematics, calculus makes it worse. Integration is opposite of differentiation: but why teach it to us?

The other major category of students is the one who take on calculus but with a caveat. They are the ones who will score in the 80s and 90s in the examination, but they have cracked the exam system per se. And might not have any foundational knowledge of calculus. But someone might ask how can one score 95/100 and still not have foundational knowledge of the subject matter? This is the way to beat the system. These learners are usually drilled in solving problems of a particular type. It is no different than chug and slug. They see a particular problem – they apply a rote learned method to solve it and bingo there is a solution. I have seen students labour “problem sets” — typically hundreds of problems of a given type — to score in the 90s in the papers. This just gives them the ability to solve typical problems which are usually asked in the examinations. Since the examination does not ask for questions based on conceptual knowledge – it never gets tested. Perhaps even their teachers if asked conceptual questions will not be able to handle them — it will be treated like a radioactive waste and thrown out — since it will be **out of syllabus**.

There is a third minority (a real minority, and may not be real!, this might just be wishful thinking) who will actually understand the meaning and significance of the conceptual knowledge, and they might not score in the 90s. They might take a fancy for the subject due to calculus but the way syllabus is structured it is astonishing that any students have any fascination left for mathematics. Like someone had said: **the fascination for mathematics cannot be taught it must be caught.** And this is exactly what MAA and NCTM have said in their statement about dropping calculus from high-school.

What the members of the mathematical community—especially those in the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM)—have known for a long time is that the pump that is pushing more students into more advanced mathematics ever earlier is not just ineffective: It is

counter-productive. Too many students are moving too fast through preliminary courses so that they can get calculus onto their high school transcripts. The result is that even if they are able to pass high school calculus, they have established an inadequate foundation on which to build the mathematical knowledge required for a STEM career. (emphasis added)

The problem stems from the fact that the foundational topics which are prerequisites for calculus are on shaky grounds. No wonder anything build on top of them is not solid. I remember having very rudimentary calculus in college chemistry, when it was not needed and high-flying into physical meaning of derivatives in physics which was not covered enough earlier. There is a certain mismatch between the expectations from the students and their actual knowledge of the discipline as they come to college from high-school.

Too many students are being accelerated, short-changing their preparation in and knowledge of algebra, geometry, trigonometry, and other precalculus topics. Too many students experience a secondary school calculus course that drills on the techniques and procedures that will enable them to successfully answer standard problems, but are never challenged to encounter and understand the conceptual foundations of calculus. Too many students arrive at college Calculus I and see a course that looks like a review of what they learned the year before. By the time they realize that the expectations of this course are very different from what they had previously experienced, it is often too late to get up to speed.

Though they conclude that with enough solid conceptual background in these prerequisites it might be beneficial for the students to have a calculus course in the highschool.