What develops in children as they grow up?

. . . the most ubiquitous finding in developmental research is that infants show more adult- like performance as they grow older. [1]

The very fact that children grow up and become adults relates to the above sentence. The starting and the ending points of the child’s development are known to us. The main aim of the developmental theories is to find out the ‘paths’ that lead to the change from an infant to an adult. Thus in a way different theories ‘map’ out the regions between the infant and adult. For achieving this, every theory has some tools, processes, structures and concepts. Change and development in each of these parameters results in the overall development of the child. The parameters and the agents of development may be different in the different approaches. We consider each of the major developmental theories with respect to their parameters of development.
The broad outlines for the various developmental approaches presented here follow closely the section What Develops? at the end of each chapter in [4] unless otherwise indicated.

1 Piagetian Approach

The basic paradigm that the Piagetian approach envisages, is the stagewise development of the child and the associated psychological structures or schemes. The stages of child range from an infant at sensorimotor stage to an adolescent in formal operational stage. Associated with each stage is the characteristic structural change in schemes, regulations, functions, and various logico-mathematical structures. So the answer to the question ‘what develops’ according to Piaget would be that the schemes and structures associated with each stage develop, in accordance to characteristic for each stage. This development can be assessed through observations, interviews taken by the experimenter [4] pg. 72.

2 Information Processing Approach

In the information processing approach, the cognitive processing is the measure of development. The increase in cognitive processing means that it becomes efficient, well organized, and the content of information also increases, which results in the overall development. Children acquire ‘rules’, ‘strategies’, ‘scripts’ and more knowledge. The concept of memory is directly related to the cognitive processing, it determines the ‘speed’ of processing as well as the ‘output’. So the increase in the memory capacity results in the overall increase ‘quality’ as well as the ‘quantity’ of the cognitive processing. In case of the connectionist approach the strengthening of connections in terms of number and strengths over time, would represent the development of the particular path of connections related to the input.

3 Vygotskian Approach

In the Vygotskian approach the development of the child has a distinctly social character. Also the development is not just limited to the individual, but is much broader in the outlook; viz. a culture, a species, a child, a cognitive skill. The basic unit of development is the “active-child-in- cultural-context.” This unit is responsible for construction of different cognitive skills, including “system of meaning and its psychological tools.” The ideal end point in development of each culture is dependent of the goals of the particular culture. The goal of the culture is the basic driving force for the development of the child, and the interactions of the child with the society are responsible for this. The psychological tools or the higher mental functions are the parameters of the development of the child. A volitional control, conscious awareness of these higher mental functions represents a final step in the process of development [6] Chapters 5 and 6.

4 Psychoanalytic Approach

In the Freudian or the psycho-analytic approach three structures viz. the id, ego and the superego form the central basis of the theory. The id is the largest portion of the mind, is innate and is responsible for biological needs and desires. The id aims to satisfy the impulses without any delay. The ego which emerges in early infancy, is the conscious part of the personality and is responsible for the completion of id’s impulses in accordance with reality. The superego develops between 3 -6 years and incorporates the values of the society. The emergence, interaction and the struggle between these three structures form the basis of development. [2] pg. 14, [4] pg. 137.

5 Social Learning Theories

The learning theorists provide only a few universal behaviors as the act of learning itself depends on ‘what the environment has to offer.’ Since this theory accounts for development primarily as a quantitative change, one in which the learning episodes accumulate over time; the ability to skillfully learn what is observed or listened from the other people or by attending to symbolic characters or imitation in the society is developed in the children universally [4] pg. 201.

6 Ecological Theories

In the Gibson’s ecological theory child actively learns from experience and environment. The child learns to detect the structure, which specifies the information available to be perceived. Gibson has proposed four parameters for human behavior viz. agency, prospectivity, search for order, and flexibility. Agency “is the self in control, the quality of intentionality in behavior.” We see ourselves as distinct from the environment, and can be agent to cause the change in it. Thus with development our aspect towards this relationship changes. Prospectivity refers to the intentionality, planning and anticipation of the future. This is also seen to develop with the age. The search for order would involve the search for patterns, order and regularity in trying to make the sense of the environment. The aspect of flexibility comes into picture with the adaptation to the environment with whatever ‘skills’ one has. The affordances [“what an environment offers it provides for an organism; they are opportunities for action”] needed for working in another setting are obtained by changing the activities [4] pg. 360.

7 Modularity Nativism

The term modularity nativism refers to a set of approaches that postulate certain innate modules, structures or constraints, each specialized for a particular domain of cognition [3] pg 20. The modules are ‘pre-programmed’ to respond to specific sorts of information. These innate modules require a ‘trigger’ in form of little experiences, with appropriate content, to be activated. The different modules are posited to be relatively independent of each other, such that the development in one does not overflow into another. The developmental changes in thinking are caused by external factors such as maturation [4] pg. 427. This in turn implies that the infant mind is not very different from that of an adult.

8 Theory Theory

The theory theory approach is another domain specific approach to child development, which likens the children’s knowledge to a scientific theory [3] pg. 20. The children are capable of constructing intuitive, folk , everyday na ̈ıve “theories” for a particular domain [4] pg. 423. According to this theory the child has different theories for different domains. In the development process the children ‘test’ these intuitive theories, just like a scientists, in light of their experiences, thus they are like ‘little scientists’. So the answer to the question, What Develops? is that these intuitive na ̈ıve theories develop, with the experience of the children with the real world.

9 Dynamic Systems

The dynamic systems approach to child development addresses change over time in the complex holistic systems, especially self organizing ones [4] pg. 432. The term dynamic system most generally means “simply systems of elements that change over time.” In dynamic systems we have two basic themes for development [5] pg. 563:

  1. Development can only be understood as the the multiple, mutual, and continuous interaction of all the levels of the developing system, from the molecular to the cultural.
  2. Development can only be understood as nested processes that unfold over many time scales, from milliseconds to years.

One of the metaphors that is used to explain the dynamic systems approach is a mountain stream . The behavioral pattern are analogous to the eddies and the ripples of a mountain stream. In mountain stream metaphor “behavioral development is seen as an epigenetic process, that is truly constructed by its own history and system wide activity” [5] pg. 569. Thus development is seen as a process in which new behavioral patterns emerge because of interaction. [5]

References

[1]  Aslin as quoted in [3] pg. 47.
[2]  Berk L., Child Development 3rd Ed. 2001, Prentice Hall of India
[3]  Flavell J. H., Miller P. H., Miller S. A. Cognitive Development 4th Ed. 2001, Prentice Hall
[4]  Miller P. H., Theories of Developmental Psychology 2001, W.H. Freeman
[5]  Thelen E., Smith L. B., “Dynamic Systems Theories” Chapter 10 in Handbook of Child Psychology : Vol. 1. Theoretical Models of Human Development 1998, Wiley
[6]  Vygotsky L. S., Thinking and Speech Ed. Rieber, Carton The Collected Works of L.S. Vygotsky, Vol. 1: Problems of General Psychology 1987 Plenum

The psychology of perception of time in elevators

As a technology, elevators were mandatory for having high rise apartments. You really don’t want to climb up 35 flights of stairs to just get home. My experience with elevators (or lifts as they are more commonly called in India) has been rather strange at times and continues to be so. And I am pretty sure, this is something most people also experience. If you look at it with scrutiny, it is not a strange experience per se, but I found it fascinating nonetheless. As the title of the post suggests, it is about how we perceive the passage of time when we are in an elevator. Now, typically, they would take less than a minute, sometimes perhaps 10-20 seconds to traverse the required distance. Now, here I am considering typical apartment buildings which I have lived in. Not the skyscrapers with 100s of floors. The lift takes about 12 seconds, as timed using a stopwatch to reach my floor if there are no other stops. Of course, if there are stops on intervening floors when people get in or get out, this is longer. So this is the minimum possible time for the lift to take this floor, both ways. That is from my floor to the ground floor and from the ground floor to my floor.

The distance between the ground floor and my floor is constant. The lift and its motor produce the same acceleration and hence same terminal velocity, and the time taken is the same (as measured with a chronometer). I used a quantum-temporal-displacement-chronometer to be sure about time measurement. So our experience of this short travel should also be the same. But this is far from the case. Traveling in the lift gives a variety of experiences. But most strongly it affects how we perceive the passage of time during this short journey. Sometimes it is as if the ground floor is touched as soon as you press the 0 button on the control panel, while at other times it seems time itself has slowed down and it is taking centuries to cover that trivial distance. You may look at the panel displaying the current floor several times during these few seconds and yet it somehow feels lift is moving too slowly. And at times when you are not looking at the panel, and are lost in your thoughts, it chimes to indicate the ground floor has arrived. And you are surprised that it took such a short time. So what kind of blackmagicfuckery is this you wonder? That we subjectively experience something entirely different in terms of time perception is nothing new, but in the case of an elevator, it is so much striking and a part of everyday experience.

I have concocted explanations for the two cases one in which we deem the lift going too slowly and one in which we perceive it be too fast. In the first case, when we perceive the lift to be too slow, we are perhaps not thinking about anything else. Our entire cognitive apparatus and sense organs (eyes and ears) are solely focussed on getting to the destination. Hence, we tend to only look at the floors numbers on the display panel again and again. Expecting it to change often, and our expectation time, the way our neurons are firing is much faster than the real-time. The anticipation is that it should go faster whereas it is going at its own pre-determined pace. Hence, there is a cognitive dissonance that we experience as lift going too slowly. This is even more pronounced if we are in a hurry to get somewhere or are already late. I have seen people press the buttons on the control panel again and again in the hope that it will get them there faster, but it doesn’t work that way. Objectively measured the lift will take the pre-determined time to reach its destination. You are only subjectively experiencing that it is taking longer. Perhaps two persons in the same lift will have a  completely different perception of time depending upon their mental states.

Now coming to the other case, in which we experience the time to be too short, perhaps our cognitive system is already too loaded. This is when before entering the lift we are deep in a thought chain that we are processing. In such a scenario, we expect the lift to just take us to the destination once we press the button. Our schema for the elevator is activated, we don’t have to do any cognitive processing once we press the button. The schema, as an automated response shaped by our experiences with elevators and induction, works seamlessly when not interfered with, assuming that the elevator is behaving in its normal manner. I have had experience of an elevator which could close the door as you were trying to enter. It was almost as if the elevator waited like a predator to catch its pray. Some logic circuits in this elevator were fried, and it won’t let you off you when it caught your leg. Or the elevator might itself have a severe case of fear of heights (vertigo?), as told in HHGTG and would not want to travel to heights. But these being extreme cases, most elevators are domesticated and docile, doing the deed they are designed to do depositing and delivering cargo to destinations, despite the draconian ways in which some travellers might treat them.

Coming back to the explanation for the former case, perhaps due to no cognitive load we are trying to screw with the automated schema. We are just running the simulation of the schema for elevators in our minds, and confusing it with the real world out there. Hence there is a cognitive dissonance. We are expecting something in the mind, while we are seeing something in reality. I have also tried this experiment sometimes when this happens. I close my eyes and mentally calculate the amount of time that might have passed and try to predict the floor that I might have reached. I open my eyes to check if I have guessed correctly but most of the times I am incorrect in the guess.

When we have company in the lift, the temporal experience can be altered and can be subjective as well. If you are with a person whom you find attractive or admire, you might feel that the time taken was perhaps too short. On the other hand, if it is somebody whom you find disgusting or un-attractive, the same journey might seem like a lifetime or a life sentence. In this case, perhaps the cognitive system has become completely Epicurean (when it is not?) in its approach and wants to maximise the good times and minimise the not-so-good ones.

But this does not end the discussion of the elevators. Experiments in elevators provide some useful insights in fundamental physics. This is related to the concepts of frames of reference and the so-called equivalence principle. Elevators are used in Gedanken experiments for thinking about the equivalence principle, which later gave rise to the general theory of relativity.

Apple falling inside a box that rests on the Earth. Indistinguishable motion when the appl is inside an accelerated box in outer space.
 
The equivalence principle states that to an observer in a freely falling elevator the laws of physics are the same as in the inertial frames of special relativity (at least in the  immediate neighbourhood of the centre of the elevator). The effects due to the accelerated motion and to the gravitational forces exactly cancel. An observer sitting in an enclosed elevator cannot, if he observes apparent gravitational forces, tell what portion of these correspond to acceleration and what portion to actual gravitational forces. He will detect no forces at all unless other forces (i.e., other than gravitational forces) act on the elevator. In particular, the postulated principle of equivalence requires that the ratio of the inertial and gravitational masses be M_i/M_g = 1. The “weightlessness” of a man in orbit in a satellite is a consequence of the equivalence principle. Pursuit of the mathematical consequences of the  principle of equivalence leads to the general theory of relativity.. –
From Kittel Mechanics – Berkeley Physics Course Volume 1

 

Another fundamental aspect of physics which uses elevators is the notion of inertial and non-inertial frames of reference. An inertial frame of reference is one in which the particle experiences no acceleration (either transitional or rotational).

Our ability to say whether or not a particular reference frame is an inertial frame will depend in a strict sense upon the precision with which we can detect the effects of a small acceleration of the frame. In a practical sense, a reference frame in which no acceleration is observed for a particle believed to be free of any force and constraint is taken to be an inertial frame.

Now an elevator moving with a constant downward acceleration will be no different than the gravity that we experience on the surface of the Earth. No dynamical experiments conducted inside the elevator will ever tell us whether the elevator is moving with constant acceleration or it is stationary at the surface of the Earth. To know what is the actual case we have to go and perform experiments / take observations outside the lift.

Screenshot 2019-07-31 at 8.21.51 PM

Thus the humble lift or elevator has more to offer to you than just taking you from point A to point B in your daily routine.

Implicit cognition in the visual mode

Images become iconified, with the image representing an object or
phenomena, but this happens by enculturation rather by training. An
example to elaborate this notion is the painting Treachery of
Images by Belgian surrealist artist René Magritte. The painting is
also sometimes called This is not a pipe. The picture shows a
pipe, and below it, Magritte painted, “Ceci n’est pas une pipe.”,
French for “This is not a pipe.”
176
When one looks at the painting, one
exclaims “Of course, it is a pipe! What is the painter trying to say
here? We can all see that it is indeed a pipe, only a fool will claim
otherwise!” But then this is what Magritte has to say:

The famous pipe. How people reproached me for it! And yet, could you
stuff my pipe? No, it’s just a representation, is it not? So if I had
written on my picture `This is a pipe’, I’d have been lying!

Aha! Yess! Of course!! you say. “Of course it is not a pipe! Of
course it is a representation of the pipe. We all know that! Is this
all the painter was trying to say? Its a sort of let down, we were
expecting more abstract thing from the surrealist.” We see that the
idea or concept that the painting is a \emph{representation} is so
deeply embedded in our mental conceptual construct that we take it for
granted all the time. It has become so basic to our everyday social
discourse and intercourse that by default we assume it to be so. Hence
the confusion about the image of the pipe. Magritte exposes this
simple assumption, that we so often ignore. This is true for all the
graphics that we see around us. The assumption is implicit in all the
things we experience in the society. The representation becomes the
thing itself, for it is implicit in the way we talk and communicate.
Big B and D
When you look at a photo of something or someone, you recognize
it. “This is Big B!” you say looking at the painting! But then you
have already implicitly assumed that the representation of Big B is Big B. This implicit assumption comes from years of implicit training from being submerged in  the sea of the visual artefacts that surround and drown us. This association between the visual representation and the reality it represents had become the central theme of the visual culture that we live in. The training that we need for such an association comes from the peers and mentors that surround us from the childhood. The meaning and the association of the images is taught/caught over the years, so much so that we assume the abstract association is the normal way things are. In this way it becomes the implicit truth, though when one is pressed, the explicit connections are brought out.
Yet when it comes to understanding images in science and mathematics, the same thing doesn’t happen. There is no enculturation of children into understand the implicit meaning in these images. Hardly there are no peers or mentors whose actions and practices can be imitated by the young impressible learners. The practice which comes so naturally in other domains (identifying actor with a picture of the actor, or identifying a physical space with a photo) doesn’t happen in science and mathematics classrooms. The notion of practice is dissociated from the what is done to imbibe this understanding in the children. A practice based approach where the images become synonymous with their implied meaning is used in vocabulary might one very positive way out, this is after all practitioners of science and mathematics learn their trade.

On who controls who

PUNCH AND JUDY, TO THEIR AUDIENCE
Our puppet strings are hard to see,
So we perceive ourselves as free,
Convinced that no mere objects could
Behave in terms of bad and good.
To you, we mannikins seem less
than live, because our consciousness
is that of dummies, made to sit
on laps of gods and mouth their wit;
Are you, our transcendental gods,
likewise dangled from your rods,
and need, to show spontaneous charm,
some higher god’s inserted arm?
We seem to form a nested set,
with each the next one’s marionette,
who, if you asked him, would insist
that he’s the last ventriloquist.
-Theaodore Melnechuk

Known knowns, Unknown unknowns

Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – the ones we don’t know we don’t know

Rumsfeld