The Art of Not Reading

The art of not reading is a very important one. It consists in not taking an interest in whatever may be engaging the attention of the general public at any particular time. When some political or ecclesiastical pamphlet, or novel, or poem is making great commotion, You should remember That he who writes for fools Always finds a large public. – A precondition for reading good books is not reading bad ones: for life is short.
– Arthur Schopenhauer

Very relevant quote with the kind of circus main stream media has become in India.

Technologies in the classroom

ict-satellite-education

How to modernise education? How to make use of new technological developments that are around us to make learning in schools better? These are some of the questions that we will look at in the current post. In particular, we will be looking at the so-called satellite education as being implemented in some schools.

In many discussions regarding education, the teachers are usually blamed for not doing their assigned jobs correctly. There is some truth in these accusations. Having worked with teachers at different levels (primary to university) and in different settings (govt schools, private elite schools, teacher training institutes, colleges, and universities) I have come to the conclusion that teachers are part of the problem. This will be elaborated in another post and before you draw out your pitchforks the disclaimer: of course there are good teachers, who do their jobs well.

So one of the solutions is to take these good teachers to all the classrooms. Of course, it cannot be done in a physical way. This is where the technological advance pitches in. We take the good teachers to classrooms via satellites. The TV in the classroom becomes the blackboard, which allows the students to get the best of experiences that the system can offer. Now, this is not just limited to schools but also colleges, some of the best institutes in the country are offering “distance-education” courses like this. The government has invested a large sum in higher education in the form of Swayam channels. These channels are running lectures by various faculties of institutes across India 24×7. Mind you most of these are not specially produced lectures for the TV, they are recordings of usual lectures that these faculties give to their classes. Most are boring af, with them reading out the powerless-pointless slides one after other. They cram as much text as possible on these slides. Making them dense in terms of ink ratio, but unfathomable in terms of learning from them. Anyways this is a subject for another post.

Imagination and philosophies

Our sense of imagination is limited by what we know, and the
philosophies that we subscribe to. For some, it is clear about what their assumptions are for others it is not. They think that this is how it should be, completely ignorant of the notion that some of their concepts are based on assumptions. For some people, this is something that they are aware of, for most of us, we are not aware of this. Many
times we think of finding solace in things which are traditional. Since it has stood the test of time, it must have some inherent value they say. It is our ignorance and arrogance that we are not seeing any value in it. Hence people resist change. Why try something new which might or might work, or work equally well when we have something which is tried and tested? Of course, stability is important, but then stability does not lead to change. Yet when people change things, they try to replicate the models that they have found to work, and hence reducing the risk.

If we apply the same idea with regards to education, we also come across many such examples. The satellite television used in the classroom is one such case. The idea is not new. As soon as television technology became commonly feasible in the 50s and 60s, immediately some pedagogues of the era jumped to the idea of using them for education. This ideally suited the “transmission model” of education which was in vogue at that time with behaviorism ruling the roost of psychology in general and education in particular. In a way, learning via television is the ultimate epitome of the transmission model. In a regular classroom, there is at least a scope for the teacher and student to interact. But in this case, the entire flow of information is in one direction. The transmission is the transmission of learning. No wonder for many decades, and even now television was seen as a game-changer and harbinger of technological learning. Television was also seen as non-invasive technology, as it is passive which works for everyone involved, except perhaps for the most important stakeholders the learner. The television didn’t and doesn’t challenge the traditional “transmission model” of education, which most teachers and stakeholders (including parents) do believe in. The values which enlightened pedagogues worship, find a very low priority with most other stakeholders.

The central mindset in education

The term “centralised mindset” refers to the idea that in complex systems there has to be a controlling agent who overseas all executions.  The centralised mindset refers to a belief that any system which works well must have a system or authority (in the form of a person or a group) which must somehow control the mechanism. The belief in the centralised mindset is that the individuals in a complex system are too unintelligent to behave in a coordinated, complex manner. For example, for a long time, it was believed that the “V” formation that one sees in the flying birds is due to a “leader” in the group. This supposed leader will make the group fall in the “V” patterns by organising the other group members. This is a very intuitive model that appeals to common sense. Whenever we see some patterns, we assume there must be an inherent design or a designer. In the case of the birds in “V” shape the same logic applies. There must be a leader who makes sure such a pattern is created. But such a view, however intuitive and correct it may seem is incorrect. As it happens with most of the other principles in science, in this case too the correct explanation is counter-intuitive. There is no leader in the case of the birds. The “V” pattern that we see is an example of what is known as an emergent phenomenon. It arises from the interaction of the birds which are flying together. When all the individuals follow simple rules in interacting with their neighbours, the “V” pattern emerges. The people who believe in a central leader are wrong in this case. It is a fiction that makes things that we observe easy to accept. But it is not correct. For many such examples and deeper discussions, see Turtles, Termites, and Traffic Jams by Mitchel Resnick.

There are several natural and artificial phenomena where earlier we (including the experts who propose such explanations) though that there was a central control involved in creating patterns, but in most cases, we have discovered otherwise. The counter-intuitive explanation that there is no central control or mechanism just doesn’t appeal to people. How can it be that there is no central control and yet the thing works on its own? Do we always need a centralised control? People argue that without a centralised control there will be chaos or anarchy. Stable patterns of behaviour or observations cannot emerge, it is assumed if there is no central control. Examples are given of a central governing that we are used to so much.

Now you might be wondering what has this to do with education? The general bureaucracy in the educational field is seen as centralised. For example, the creation of a textbook or syllabus or curriculum and assessment is always a centralised process. Think of the board exams.

Why cannot a school or a teacher decide upon textbooks and curriculum?

Why this is so? Because that is how it was in the other government departments. This is what the tradition says. A bunch of experts (preferably with a prefix of a Dr. or Prof.) will decide for everyone what they should learn and more importantly how they should learn it and most importantly how will this learning be assessed. This triumvirate or what to learn, how to learn and how to assess is assumed to be too complex and too important to be left to the plebs. This is where centralised mindset in the form of centralised expert committees is brought in.

The power of the teacher in the classroom is reduced to
a mere executioner ( a meek dictator if you will, as per Krishna Kumar) of all the algorithms set for them to follow. Some good teachers would improvise on this little elbow room that the classroom did offer. But now in an effort to make it
more central in discourse and execution, a centralised teacher and
teaching is needed. Indeed this is the idea behind the satellite television in the
classrooms. To ensure that quality (standardised) education reaches all learners. This also reduces the load on the local teachers, who just have to shepherd the learners to the AV room, and their job is done. The parents are happy as their children are supposed to be learning from the best teacher. And this happens live in some cases, I witnessed this entire process in Rajasthan. Seeing it from the studio being recorded and transmitted live via the satellite, and also saw (at another time) how it is received and executed in the schools. In some cases for interactivity and feedback, a Whatsapp number is provided where the teachers or the learners can reach out to the teacher in the studio. This teacher at the studio genuinely believed that he was being helpful to the students and the system worked. The proof for this was not some study but the messages he received from the school teachers thanking him for taking their class. Real interactivity which might happen in an actual classroom was found to be missing.

Just like the illustration on the top of the post shows, the core idea in the satellite television in the classroom is to centrally repeat the process of transmission of knowledge to all the learners with an added bonus of synchronicity. One act can be used at multiple locations. But this creates inhibitions for interactivity. Constructivism of the experts can go for a toss. Why do we need to create a custom curriculum for each child, when one expert in one manner can teach them all at the same time?

 

Why philosophy is so important in science education

This is a nice article whicH I have reposted from AEON…

Each semester, I teach courses on the philosophy of science to undergraduates at the University of New Hampshire. Most of the students take my courses to satisfy general education requirements, and most of them have never taken a philosophy class before.
On the first day of the semester, I try to give them an impression of what the philosophy of science is about. I begin by explaining to them that philosophy addresses issues that can’t be settled by facts alone, and that the philosophy of science is the application of this approach to the domain of science. After this, I explain some concepts that will be central to the course: induction, evidence, and method in scientific enquiry. I tell them that science proceeds by induction, the practices of drawing on past observations to make general claims about what has not yet been observed, but that philosophers see induction as inadequately justified, and therefore problematic for science. I then touch on the difficulty of deciding which evidence fits which hypothesis uniquely, and why getting this right is vital for any scientific research. I let them know that ‘the scientific method’ is not singular and straightforward, and that there are basic disputes about what scientific methodology should look like. Lastly, I stress that although these issues are ‘philosophical’, they nevertheless have real consequences for how science is done.

At this point, I’m often asked questions such as: ‘What are your qualifications?’ ‘Which school did you attend?’ and ‘Are you a scientist?’

Perhaps they ask these questions because, as a female philosopher of Jamaican extraction, I embody an unfamiliar cluster of identities, and they are curious about me. I’m sure that’s partly right, but I think that there’s more to it, because I’ve observed a similar pattern in a philosophy of science course taught by a more stereotypical professor. As a graduate student at Cornell University in New York, I served as a teaching assistant for a course on human nature and evolution. The professor who taught it made a very different physical impression than I do. He was white, male, bearded and in his 60s – the very image of academic authority. But students were skeptical of his views about science, because, as some said, disapprovingly: ‘He isn’t a scientist.’

I think that these responses have to do with concerns about the value of philosophy compared with that of science. It is no wonder that some of my students are doubtful that philosophers have anything useful to say about science. They are aware that prominent scientists have stated publicly that philosophy is irrelevant to science, if not utterly worthless and anachronistic. They know that STEM (science, technology, engineering and mathematics) education is accorded vastly greater importance than anything that the humanities have to offer.

Many of the young people who attend my classes think that philosophy is a fuzzy discipline that’s concerned only with matters of opinion, whereas science is in the business of discovering facts, delivering proofs, and disseminating objective truths. Furthermore, many of them believe that scientists can answer philosophical questions, but philosophers have no business weighing in on scientific ones.

Why do college students so often treat philosophy as wholly distinct from and subordinate to science? In my experience, four reasons stand out.

One has to do with a lack of historical awareness. College students tend to think that departmental divisions mirror sharp divisions in the world, and so they cannot appreciate that philosophy and science, as well as the purported divide between them, are dynamic human creations. Some of the subjects that are now labelled ‘science’ once fell under different headings. Physics, the most secure of the sciences, was once the purview of ‘natural philosophy’. And music was once at home in the faculty of mathematics. The scope of science has both narrowed and broadened, depending on the time and place and cultural contexts where it was practised.

Another reason has to do with concrete results. Science solves real-world problems. It gives us technology: things that we can touch, see and use. It gives us vaccines, GMO crops, and painkillers. Philosophy doesn’t seem, to the students, to have any tangibles to show. But, to the contrary, philosophical tangibles are many: Albert Einstein’s philosophical thought experiments made Cassini possible. Aristotle’s logic is the basis for computer science, which gave us laptops and smartphones. And philosophers’ work on the mind-body problem set the stage for the emergence of neuropsychology and therefore brain-imagining technology. Philosophy has always been quietly at work in the background of science.

A third reason has to do with concerns about truth, objectivity and bias. Science, students insist, is purely objective, and anyone who challenges that view must be misguided. A person is not deemed to be objective if she approaches her research with a set of background assumptions. Instead, she’s ‘ideological’. But all of us are ‘biased’ and our biases fuel the creative work of science. This issue can be difficult to address, because a naive conception of objectivity is so ingrained in the popular image of what science is. To approach it, I invite students to look at something nearby without any presuppositions. I then ask them to tell me what they see. They pause… and then recognise that they can’t interpret their experiences without drawing on prior ideas. Once they notice this, the idea that it can be appropriate to ask questions about objectivity in science ceases to be so strange.

The fourth source of students’ discomfort comes from what they take science education to be. One gets the impression that they think of science as mainly itemising the things that exist – ‘the facts’ – and of science education as teaching them what these facts are. I don’t conform to these expectations. But as a philosopher, I am mainly concerned with how these facts get selected and interpreted, why some are regarded as more significant than others, the ways in which facts are infused with presuppositions, and so on.

Students often respond to these concerns by stating impatiently that facts are facts. But to say that a thing is identical to itself is not to say anything interesting about it. What students mean to say by ‘facts are facts’ is that once we have ‘the facts’ there is no room for interpretation or disagreement.

Why do they think this way? It’s not because this is the way that science is practised but rather, because this is how science is normally taught. There are a daunting number of facts and procedures that students must master if they are to become scientifically literate, and they have only a limited amount of time in which to learn them. Scientists must design their courses to keep up with rapidly expanding empirical knowledge, and they do not have the leisure of devoting hours of class-time to questions that they probably are not trained to address. The unintended consequence is that students often come away from their classes without being aware that philosophical questions are relevant to scientific theory and practice.

But things don’t have to be this way. If the right educational platform is laid, philosophers like me will not have to work against the wind to convince our students that we have something important to say about science. For this we need assistance from our scientist colleagues, whom students see as the only legitimate purveyors of scientific knowledge. I propose an explicit division of labour. Our scientist colleagues should continue to teach the fundamentals of science, but they can help by making clear to their students that science brims with important conceptual, interpretative, methodological and ethical issues that philosophers are uniquely situated to address, and that far from being irrelevant to science, philosophical matters lie at its heart.Aeon counter – do not remove

 

Subrena E Smith

This article was originally published at Aeon and has been republished under Creative Commons.

Le Corbusier, architecture and Chandigarh

Some years back I had heard that Chandigarh, though completely planned, was not a livable city, it somehow was not a comfortable place to be in. Now, while reading The Blank Slate by Steven Pinker I came across some background perspective on this.

Screen Shot 2019-03-04 at 4.19.57 PM

It’s not just behaviorists and Stalinists who forgot that a denial of human nature may have costs in freedom and happiness. Twentieth-century Marxism was part of a larger intellectual current that has been called Authoritarian High Modernism: the conceit that planners could redesign society from the top down using “scientific” principles.” The architect Le Corbusier, for example, argued that urban planners should not be fettered by traditions and tastes, since they only perpetuated the overcrowded chaos of the cities of his day.”We must build places where mankind will be reborn;’ he wrote. “Each man will live in an ordered relation to the whole,”? In Le Corbusier’s utopia, planners would begin with a “clean tablecloth” (sound familiar?) and mastermind all buildings and public spaces to service “human needs,” They had a minimalist conception of those needs: each person was thought to require a fixed amount of air, heat, light, and space for eating, sleeping, working, commuting, and a few other activities. It did not occur to Le Corbusier that intimate gatherings with family and friends might be a human need, so he proposed large communal dining halls to replace kitchens, Also missing from his list of needs was the desire to socialize in small groups in public places, so he planned his cities around freeways, large buildings, and vast open plazas, with no squares or crossroads in which people would feel comfortable hanging out to schmooze. Homes were “machines for living;” free of archaic inefficiencies like gardens and ornamentation, and thus were efficiently packed together in large, rectangular housing projects.

Le Corbusier was frustrated in his aspiration to flatten Paris, Buenos Aires, and Rio de Janeiro and rebuild them according to his scientific principles. But in the 1950s he was given carte blanche to design Chandigarh, the capital of the Punjab, and one of his disciples was given a clean tablecloth for Brasilia, the capital of Brazil. Today, both cities are notorious as uninviting wastelands detested by the civil servants who live in them.
– Steven Pinker (The Blank Slate, p. 170)

Dialectic vs Algorithmic Mathematics

Dialectic mathematics is a rigorously logical science, where statements are either true or false, and where objects with specified properties either do or do not exist. Algorithmic mathematics is a tool for solving problems. Here we are concerned not only with the existence of a mathematical object, but also with the credentials of its existence. Dialectic mathematics is an intellectual game played according to titles about which there is a high degree of consensus. The rules ol the game of algorithmic mathematics vary according to the urgency of the problem on hand. We never could have put a man on the moon if we had insisted that the trajectories should be computed with dialectic rigor. The rules may also vary according to the computing equipment available. Dialectic mathematics invites contemplation. Algorithmic mathematics invites action. Dialectic mathematics generates insight. Algorithmic mathematics generates results.

Review of Annihilation: the novel and the movie

Screen Shot 2018-04-29 at 4.27.55 PM.png .              annihilation

Somewhere on my feeds, I came to know about a movie named Annihilation starring Natalie Portman. The review was good, and it mentioned that the movie was based on a book of the same name by Jeff VanderMeer. So, I was in two minds whether to read the book first and then watch the movie or vice versa. I decided that I will read the book first and then watch the movie. Now that I have done both, here is a review of them, with important differences and my reflections about them.

Warning: Spoilers Ahead

We start with the book first, this will help us create a baseline, on which to review the movie. The book starts with the biologist and three of her team members (a psychologist, an anthropologist, a surveyor) initiated into a region known as Area X. Now, apparently bizarre things have happened inside the Area X, (perhaps a tribute to the X-files). And there is a border which separates Area X from the normal world. Now according to the book, this border is invisible. The team is trained for a prolonged period for their mission in a variety of situations with the psychologist as their lead. As they enter the perimeter of Area X, the linguist backs out (hence only a team of 4). Now through the book, the characters are almost never referred by their proper names, and it is part of the design of the training that it is that way. The idea behind this it seems is to make the mission impersonal, without including their biases.

> Besides, we were always strongly discouraged from using names: We were meant to be focused on our purpose, and “anything personal should be left behind.” Names belonged to where we had come from, not to who we were while embedded in Area X.

This is an all female team, with only the surveyor having any military skill. Each one of the team members is given a weapon and basic camping equipment. They are not allowed to take any electronic or advanced technological equipments (digital cameras, for example). They say there is a reason for this, but it is never explained. Anyways, the team hikes for four days to reach the “base camp”, but none of them remembers crossing the perimeter into Area X, which they find strange. This is the camp set up by the earlier expeditions. Now, during the training, they have been trained with the map of Area X, where a lighthouse is where the team members get their bearings. One the first day at the base camp, they discover another artefact which is completely missing from the maps. This is what the biologist calls a “tower”, while others prefer to call it a “tunnel”. This structure “tower/tunnel” is a core part of the book. It appears as a round cylinder about 60 feet in diameter and 8 inches above the ground. There is an “entrance” due North of the tower. And it leads to a chamber below, the structure seems to be made of stone and the next day team ventures to explore it (descends into the spiralling staircase). When they are at a level below, the biologist discovers words on the wall of the structures which are glowing. The words read:

> Where lies the strangling fruit that came from the hand of the sinner I shall bring forth the seeds of the dead to share with the worms that…

When the biologist gets closer to see what the words are made of (What are words made of anyway? Is the medium that gives the words their physicality matter?), she discovers that it is made of “Some sort of fungi”. In the process of looking at the words closely, a nodule bursts open and she inhales the spores that emanate from it. She hides this from the surveyor who is accompanying her. Now the biologist is unaware of how the inhaling of spores might affect her. They return to the base camp and agree to proceed the next day. In the meanwhile, the biologist notices something strange about the psychologist. It turns out the psychologist has been hypnotising the team members to control them since their training began. But somehow, due to the effect of the spores she has herself become immune to her hypnosis. She plays the role as if she is getting suggested by the hypnosis, covering that she is immune. Now the next morning, the biologist and the surveyor discover that the anthropologist is missing. The psychologist tells them that the anthropologist decided to go back. The biologist knows somehow it is not true.

The remaining team goes back to the “tower”, this time with breathing gear and masks. The psychologist refuses to enter the “tower” citing that the entrance must be guarded. The surveyor and the biologist descend into the tower. Now inside the tower, due to the biologists inhaling of the spores, she perceives it differently. She now can understand and look at the tower as a living organism, breathing with a heartbeat. While the surveyor is completely oblivious to this perhaps due to the hypnotising effect of the psychologist.

> I got my shit together because we were going to go forward and the surveyor couldn’t see what I saw, couldn’t experience what I was experiencing. And I couldn’t make her see it.

They see more writings on the walls of the tower as they descend further. They find that the script is “fresh” as they descend lower. They conclude that

> Something below us is writing this script. Something below us may still be in the process of writing this script.

They continue further, till they find something. There are strange ciliated feet markings on the stairs, which the biologist calls a “Crawler”. This something is the dead body of the anthropologist, with strange feet markings. The body is in disarray with her skull split open, and variety of organisms making her body their home. She is carrying her vials, and one of the vials has a sample which the biologist promptly collects. Contemplating on the “something” that might have killed her they decide to return to the top. They also discover another set of footprints which they conclude must be of the psychologists’.

In between all these events, there are flashbacks, to the time before the expedition. Telling us about the previous life of the biologist, how she was aloof even when in a crowd. Her fascination with an overgrown swimming pool, full of life. Her strained relationship with her husband, who is part of an earlier expedition. Her husband decides to volunteer for going to Area X and leaves her. There is no news about him or from him until one day he suddenly returns. He is not himself. The biologist can tell that something is missing. The next day, the people from Southern Reach come to pick him up, and he goes with them without any confrontation. But the biologist does not feel sad about this:

> Seeing him leave I felt mostly a sense of relief, to be honest, not guilt at betrayal.

With that background, the constant connect with her husband and her past life is brought to the narrative. When the surveyor and the biologist come back to the top of the tower, the psychologist is nowhere to be found. When they return to the base camp, she is neither there. And the psychologist has taken up all the weapons with her along with most of the rations and disappeared. They then try to make sense of the photos and samples that they have collected in the tower. But the photos are a riot of colours, which the surveyor finds rather disheartening. While the biologist discovers that the vial which she collected from the dead anthropologist has cells of the human brain. In all this, the biologist decides to go to the Lighthouse which seems to be the source of all the activity. The surveyor decides that she will stay back at the camp.

The biologist starts her journey to the lighthouse, on the way she sees the abandoned village, which is mentioned in the maps. There she finds that there are human like forms of trees, which are seated on a table. In all this while she feels “brightness” within her. She is changing. Due to her exposure to the spores from the words in the tunnel. She recalls her past experiences and the current ones and tries to make sense of things around her, things happening to her, things that have happened to her. As the biologist approaches the lighthouse, the area around it is desolate, and the lighthouse is seen as a fortification. Carefully, being aware that the psychologist might be there to kill her she enters the lighthouse. Everywhere she sees blood and signs of violence all through to the top of the lighthouse. Just before the top, she looks at an old photo of a person, whom she calls the lighthouse keeper. At the top, she discovers that a lot of information was kept from her and the team members regarding Area X. There were many more expeditions, as the huge cache of personal journals from previous expedition members reveals, rather than just 11 that the team was told about. She finds the journal of her husband and then departs from the lighthouse. While going down, she notices the psychologist at the bottom of the lighthouse. When she goes to her, she is on her deathbed. A fungi kind of substance has covered her arm. The psychologist utters the words “Annihilation” in desperation many times over to the biologist. She admits that she tried to kill the biologist with a gun as she was approaching the lighthouse, but her hand would not let her do it. The psychologist tells the biologist that she has changed, she sees her like a flame. It is this brightness that the biologist is talking about. She answers some questions like she took the anthropologist back to the tunnel to take samples from the Crawler under hypnosis, but anthropologist went too close to the Crawler and got killed in the process, but refuses to answer many other questions. She also tells the biologist about entries in her husband’s journal. After she has passed, the biologist takes whatever documents that the psychologist has with her. This includes a list of suggestive hypnotic keywords to be used on the team members. Annihilation in this list means “help induce immediate suicide”.

While returning from there it is already nightfall, and the biologist can see the changes in her own body. The glow is visible. While coming back, she almost encounters the beast which is responsible for the moans that they have been hearing since they came in. She spends the night on a tree, with her skin glowing. Next morning, she starts her journey towards the base camp. When she is very close to the base camp, she is shot at twice by the surveyor. The surveyor is in a frenzy, to kill the biologist. The “brightness” in the biologist start to heal her and gives her super sensing ability. With these, the biologist kills the surveyor and returns to the base camp. At the base camp, she finds that the surveyor has destroyed almost all of the basecamp and laid waste any water and food that might be there. All the papers and journals are burnt.

The biologist does an analysis of the samples that she has collected and mutations of human form emerge. The brightness in her is healing the bullet wounds, and making the biologist feel better. She thinks that due to the diversion of healing her wounds, the brightness (her mutation?) has stopped growing. She reads her husband’s journal, which she finds is mostly written for her with her pet name “ghost-bird” appearing several times over. The next day she decides to go to the bottom of the tower to find the Crawler. She takes a mask with her, as she enters the tower, her skin starts to glow and responds to the walls which are also glowing. The words are getting fresher and fresher as she goes to the lower levels. Finally she comes to the place where the Crawler is still working. The encounter with the crawler

> No words can … no photographs could …

The biologist survives the encounter, due to the mutations already in her. The Crawler consumes the inner self of the biologist in a sense, which gets a hold over her inner person. She passes out several times during this:

> What can you do when your five senses are not enough? Because I still couldn’t truly see it here, any more than I had seen it under the microscope, and that’s what scared me the most. Why couldn’t I see it?

Finally when the ordeal for her is over:

> It is not that I became used to the Crawler’s presence but that I reached a point—a single infinitesimal moment—when I once again recognised that the Crawler was an organism. A complex, unique, intricate, awe-inspiring, dangerous organism. It might be inexplicable. It might be beyond the limits of my senses to capture—or my science or my intellect—but I still believed I was in the presence of some kind of living creature, one that practised mimicry using my own thoughts. For even then, I believed that it might be pulling these different impressions of itself from my mind and projecting them back at me, as a form of camouflage. To thwart the biologist in me, to frustrate the logic left in me.”

The idea of the Crawler as some sort of creature which can mutate organisms and can mimic their thoughts is interesting. After this biologist continues to go down the tower, at the end of it she sees a door of light. But she is somehow unable to continue to this door, and start the journey back dreading the draining encounter with the Crawler again. But this time, the Crawler does not show any interest in her and lets her go. While going back she takes a last look at the Crawler, and sees a glimpse of the familiar face of the lighthouse keeper in the crawler. How did this happen? Somehow did the lighthouse keeper become the Crawler? What made this change? The answers to these questions are not given.

> When you are too close to the centre of a mystery there is no way to pull back and see the shape of it entire.

Finally, she emerges out from the tower. The book is the journal entry of the biologist.

> Observing all of this has quelled the last ashes of the burning compulsion I had to know everything … anything … and in its place remains the knowledge that the brightness is not done with me. It is just beginning, and the thought of continually doing harm to myself to remain human seems somehow pathetic.

The biologist tells us that she is leaving to explore the further reaches of Area X as the last entry in the journal.

Thus we see that the entire book, no names are referred to. Overall the sense of mystery about the origin and purpose (if any) to the events are left mostly unanswered. The above quote captures it very well. Overall I found the book satisfying read.

Part 2: The Movie

Now, that I had already read the book, I turned to the movie. The first start thing that you notice in the movie is the use of names, which is in complete contrast to the book. Also, the border which is invisible in the book, is shown as a “shimmer” in the movie. The idea that the psychologist is hypnotising the team members is also missing. In the movie the biologist (Lena, played by Natalie Portman) has also had military training. The team members in the movie are a biologist, a physicist, a medic, a psychologist, and a geomorphologist. Area X is identified as an anomaly which is increasing its range with time. All the missions/expeditions to the area have failed and no one except the biologists’ husband has returned. Unlike in the book, the Southern Reach gets to the husband in a rather aggressive way and it is at the same time they take in the biologist. In the book she volunteers herself to go in.

When they reach Area X, they become self-aware only after 3-4 days have passed and none can explain how the time was lost. As they are going towards the basecamp (in the movie it is an army base not a tent camp) they are attacked by an alligator with a different morphology. In the base camp they discover that the earlier expedition members are cutting open one of their own and showing his intestine moving like a different creature. None of the team members knows that the medic in the video is the husband of Lena. They become shocked after seeing the video and take shelter in a watchtower. To keep a watch, the psychologist is at a post on the ground. I could never understand this logic. If you are already on a watchtower, why the hell do you need a watch on the ground. Due to the noise the group wakes up and a mutated bear takes away the geomorphologist. Next day, they continue their journey towards the lighthouse. They stop at the village with the human-looking forms of the trees. The physicist explains that Area X is refracting everything from radiation to the DNA and hence it is causing so much mutations. Here biologist discovers that she is mutating too and that is when the medic ties all three of them and starts asking them questions. She discovers that the video of cutting open from the previous expedition has Lena’s husband in it. She wants answers, that is when she hears the geomorphologist call for help. She rushes to help her only to be attacked by the same bear. The bear comes up, and it is revealed that the bear is responsible for the voice of help. The medic comes back to attack the bear, but bear kills her. In the meanwhile, the physicist becomes free and kills the bear. The psychologist leaves for the lighthouse immediately in the middle of the night.

In the morning the physicist wanders off, leaving Lena alone. Lena then starts the journey to the lighthouse. There are several crystal trees before the lighthouse on the beach. She discovers the body of her husband at the lighthouse, which is recorded by the doppelganger of her husband. She goes inside a hole which seems to be the origin of the event. There she discovers the psychologist being consumed by the “Crawler”. The “Crawler” makes a copy of her by drawing a drop of her blood and takes a humanoid form. She tries to go out of the lighthouse but the humanoid form stops her from doing so. The humanoid form otherwise mirrors her actions. Finally, she takes a phosphor grenade and gives it the humanoid form which one her touch changes to her doppelganger. The grenade explodes and sets the “crawler” on fire. The fire burns everything and destroys all the mutations it has cause and brings down the shimmer. The movie begins and ends with the interrogation of the biologist about how she brought down the shimmer and was still alive.

The movie has advanced technology with the expeditions ( digital recorder, memory cards). Most importantly, in the movie, there is no mention of the tower or the running glowing script in it, which I found the most annoying. In the movie, the entire action takes place at the lighthouse. Also, killing of the creature and cease of the mutations was not needed, I personally found it too anthropocentric. Also, no explanation of the title of the movie is given. Overall, after reading the book, the movie is really disappointing to watch. It neither has the depth of the plot nor the philosophical or existential questions that permeate the book. In perhaps making the movie audience-friendly, the scriptwriter annihilated the core ideas in the book which made it special.

TIL you can kill a time-space warping, an interstellar traveller with a phosphor grenade, begin stocking right now!

I am now onto the second and third part of the Southern Reach Trilogy: Authority and Acceptance. Will post reviews of them once I am done, and surely we will not be seeing movies made based on them in the time I complete my readings.

Epistemicide!

When I read the word for the first time it invoked a very intense and intentional pun in my mind. The word was coined by a Portuguese sociologist Boaventura de Sousa Santos in his multi-volume project Reinventing Social Emancipation. Toward New Manifestos.
In this post I will be elaborating on this term, for my own future use and reference.

Episteme is a philosophical term derived from the Ancient Greek word ἐπιστήμη, which can refer to knowledge, science or understanding, and which comes from the verb ἐπίσταμαι, meaning “to know, to understand, or to be acquainted with”. Plato contrasts episteme with “doxa”: common belief or opinion.

(from Oxford Dictionary of English)

Further more the suffix cide is combining form

  1. denoting a person or substance that kills: insecticide | regicide.
  2. denoting an act of killing: suicide.

So combining the two we get the word epistemicide.


What epistemicide essentially is then is an act of killing certain knowlege, or understanding or acquaintance. It is argued that the English academic discourse which is dominant world over has killed other ways of understanding, or acquiring or transmiting knowledge. To control or invade another territory physically may still keep the invaders and their culture away from the people who are invaded and their knowledge. But with an epistemicide this invasion is complete. For the invaders have successfully dissociated the people they have invaded from their own knowledge and replaced it with the dominant discourse.

For the way that a particular culture formulates its knowledge is intricately bound up with the very identity of its people, their way of making sense of the world and the value system that holds that worldview in place. Epistemicide, as the systematic destruction of rival forms of knowledge, is at its worst nothing less than symbolic genocide.

Epistemicide works in a number of ways. Knowledges that are grounded on an ideology that is radically different from the dominant one will by and large be silenced completely. They will be starved of funding, if the hegemonic power controls that aspect; they will remain unpublished, since their very form will be unrecognizable to the editors of journals and textbooks; and they are unable to be taught in schools and universities, thus ensuring their rapid decline into oblivion.

In the name of freedom and justice, he set about destroying all opposition…

(Bennett, 2007)

Are we performing an epistemicide in our classrooms by only promoting a certain way to learn and teach and worse a centralised way to evaluate and assess that learning? Teaching things which are dissociated from the immediate real world environment of the children? Perhaps we are. This post was just to keep a reference of this term and its meaning. I will explore this further in later posts.

 

References:

Bennett, Karen (2007) Epistemicide! The Translator 13(2)

Oxford English Dictionary (2010)

Hymn of Creation from Rig Veda

This wonderful Hymn of Creation one of the oldest surviving records of philosophic doubt in the history of the world, marks the development of a high stage of abstract thinking, and it is the work of a very great poet, whose vision of the mysterious chaos before creation, and of mighty ineffable forces working in the depths of the primaeval void, is portrayed with impressive economy of language.

“Then even nothingness was not, nor existence.
There was no air then, nor the heavens beyond it
What covered it? Where was it? In whose keeping?
Was there then cosmic water, in depths unfathomed?

“Then there were neither death nor immortality,
nor was there then the torch of night and day.

The One breathed windlessly and self-sustaining.
There was that One then, and there was no other.
“At first there was only darkness wrapped in darkness.
All this was only unillumined water.

That One which came to be, enclosed in nothing,
arose at last, bom of the power of heat.
“In the beginning desire descended on it
that was the primal seed, bom of the mind.

The sages who have searched their hearts with wisdom
know that which is is kin to that which is not.
“And they have stretched their cord across the void,
and know what was above, and what below.

Seminal powers made fertile mighty forces.
Below was strength, and over it was impulse,
“But, after all, who knows, and who can say
whence it all came, and how creation happened?

The gods themselves are later than creation,
so who knows truly whence it has arisen?
“Whence all creation had its origin,
he, whether he fashioned it or whether he did not,

he, who surveys it all from highest heaven,
he knows— or maybe even he does not know.

From – The Wonder That Was India – A. L. Basham

Review of I Am A Strange Loop by Douglas Hofstadter – Part 1

I recently finished I Am A Strange Loop by Douglas Hofstadter. The book is an introduction to the core ideas about self, self-reference, feedback loops and consciousness as  an emergent phenomena. The core question that is considered is

What do we mean when we say I?

Hofstadter in the preface indicates his angst at many people missing out on the core ideas of Gödel, Escher, Bach: An Eternal Golden Braid. No doubt GEB is hard to read, and each one makes their own meaning of it.

Years went by, and I came out with other books that alluded to and added to that core message, but still there didn’t seem to be much understanding out there of what I had really been trying to say in GEB. xiii

I Am A Strange Loop is sort of a prequel to GEB, which came afterwards. In the book the focus is on developing an idea of emergent self, in which our consciousness is seen to emerge from feedback that we have by interacting with the world. Hofstadter uses a variety of examples to drive home the point of recursive feedback loops, giving rise to strange phenomena. The central claim is that we, our sense of self, our idea of consciousness derives from recursive interactions and feedback that we get via our senses.

He starts with a dialogue he wrote as a teenager between Plato and Socrates about what is it to be alive and being conscious, this in a way sets the stage for things to come. In the first chapter On the Souls and Their Sizes we are made to think about presence of souls in different foods that we eat (he himself doesn’t partake mammalian meat). We non-chalantly eat a tomato, irritatingly squish a mosquito, but what happens when we eat higher life forms, like chicken, pigs and sheep? Do they have souls? Do all living beings have souls? If so, then does the soul of a human is greater than that of a cow (now here I must be careful, there are people in my country who judge the soul of a cow much much greater than that of a human being), of a pig, of a chicken, of a mosquito of a tomato?

Does a baby lamb have a soul that matters, or is the taste of lamb chops just too delicious to worry one’s head over that? 18

The suggestive answer is  given in a conciousness cone, in which we normal adult humans are at the top and atoms are the start of the cone. But then granted that we have a soul, are we born with a fully developed one? Here Hofstadter takes a developmental approach to the concept of the soul. The idea is that we are born with some essence of what appears to be soul, then gradually over the years it develops. The concept of soul here is used interchageably with “I”. The main take home point in this chapter is whatever this is, we do not get the fully developed version of it from birth. Rather it is a developmental process which takes place in the real world, shaped by experiences. The said developmental changes are in degree, rather than a black/white switch.

In the second chapter This Teethering Bulb of Dread and Dream we look at possible ways of studying the mechanisms of the brain which might potentially shed some light on the puzzle that we are after. In general the idea of studying the hardware of the brain seems to be set in agenda of many neurologists. But Hofstadter argues against this way of studying thinking.

Saying that studying the brain is limited to the study of physical entities such as these would be like saying that literary criticism must focus on paper and bookbinding, ink and its chemistry, page sizes and margin widths, typefaces and paragraph lengths, and so forth. 26

Another analogy given is that of the heart. Just like heart is a pumping machine, brain is a thinking machine. If we only think heart as an aggregate of cells, we miss out on the bigger picture of what the cells do. The heart surgeons don’t think about heart cells but look at the larger structure. Similarly to study thinking the lower level of components may not be the correct level to study highly abstract phenomena such as concepts, analogies, consciousness, empathy etc. This is pointing towards thinking as an emergent phenomena, emerging from the interactions at lower levels which are composed of objects/entities which are not capable of thinking.

Hofstadter then takes philosopher John Searle to task for his views regarding impossibility of thinking arising from non-thinking entities. The analogy of a beer can to a neuron is taken apart. What is suggested by Searle in his thought experiments is equivalent to memory residing in a single neuron. But this certainly is not the case. We have to think of the brain as a multi-level system. But going too deep in these levels we would not get a comprehensible understanding of our thinking.

Was it some molecules inside my brain that made me reshelve it? Or was it some ideas in my brain? 31

Rather it is ideas that make more ideas.

Ideas cause ideas and help evolve new ideas. They interact with each other and with other mental forces in the same brain, in neighboring brains, and, thanks to global communication, in far distant, foreign brains. And they also interact with the external surroundings to producein toto a burstwise advance in evolution that is far beyond anything to hit the evolutionary scene yet, including the emergence of the living cell. Sperry as quoted on 31-32

Another analogy that is given is that of Thermodynamics and Statistical Mehcanics. Just as atoms interact in a gas at a micro-level to create gas laws which can be observed at a macro-level. The macro-level laws also makes it comprehensible to us, because of the sheer amount of information at mirco level that one would have to analyse to make sense. (Provided that we can in theory solve such a massive set of equations, not considering the quantum mechanical laws.) Similarly the point is made that for understanding a complex organ such as the brain, which contains billions of interacting neurons, we should not look at the hardware at the lowest level, but rather look for macro-level patterns.

Statistical mentalics can be bypassed by talking at the level of thinkodynamics. 34

The perception of the world that we get is from sensory inputs, language and culture. And it is at that level we operate, we do not seek atomic level explanations for the dropping of the atomic bomb. This simplification is part of our everyday explanation, and we choose the levels of description depending on the answers that we are seeking.

Drastic simplification is what allows us to reduce situations to their bare bones, to discover abstract essences, to put our fingers on what matters, to understand phenomena at amazingly high levels, to survive reliably in this world, and to formulate literature, art, music, and science. 35

The third chapter The Causal Potency of Patterns provides us with concrete metaphors to think about emergent phenomena and thinking at levels. The first of such metaphors is a chain of dominoes, which can be thought of as a computer program for carrying out a given computation. In this case finding checking if a number is prime: 641. Now a person watching the domino fall right upto 641 can presumably give two answers, the first one is that the domino before 641 did not fall, while other is 641 is a prime number. These two answers are many levels apart. The second example is of Hofstadter sitting a traffic jam, The reason why you are stuck in traffic, is because the car in front of you is not moving. On the other hand this does not tell you anything about  why the jam arose in the first place, which may be due to a large number of cars going home after a game or a natural disaster of some kind. The main idea is that we can have two (many?) levels of explanation each one looking at the system from a different level of detail, for example, the car ahead of you local,  the reasons for the jam global. As far as the causal analysis goes we can look at answers at different levels.

Deep understanding of causality sometimes requires the understanding of very large patterns and their abstract relationships and interactions, not just the understanding of microscopic objects interacting in microscopic time intervals. 41

Similar example is that of a combustion engine. The designers of the engine do not think about molecular level of interactions, the level that is relevant for them is the thermodynamic level of pressure, temeperature and volume. The properties of individual molecules like their locations, velocities is irrelevant in such a description, though the properties of the ensemble is.

This idea — that the bottom level, though 100 percentresponsible for what is happening, is nonetheless irrelevant to what happens — sounds almost paradoxical, and yet it is an everyday truism. 42

Another example that is given is of listening to music. Lets say you hear a piece of music, and you experience some emotions due to it. Now, consider there was a slight delay before playing started, the actual molecules which vibrated to get you the music, would be different than in the first case. Yet, you would experience the music in the same way even though the molecules that brought you that music were completely different.

The lower-level laws of their collisions played a role only in that they gave rise to predictable high-level events. But the positions, speeds, directions, even the chemical identity of the molecules – all of this was changeable, and the high-level events would have been the same. 42

Thus we can say that a lower level might be responsible for a higher level event and at the same time is irrelevant to the higher level.

 

The next metaphor we consider is that of careenium and simmbalism. (No points for guessing what the intended puns are here!) There are many witty puns throughout the book, and Hofstadter uses them very effectively to make his points. This Gedankenexperiment is referred to many times in the book. Simms (small interacting marbles) are very small marbles, which can crash into each other and bounce off the walls in a frictionless world. They are also magnetic so that if they hit each other with low velocity they can “stick” to each other and form clusters called simmballs. A simmball can be composed of millions of simms, and may loose or gain simms at its boundary. Thus we have tiny and agile simms, and huge and nearly immobile simmballs. All this bashing and boucing happens at frictionless pooltable, the careenium.

After setting this metaphorical system we add another complexiety that external events can affect the simmballs, thus we can have a record of history by reading the configurations of simmballs. Now a reductionist approach to this system would be that we really need to know only about nature of interaction of the simms, rest are just epi-phenomena, which can be explained by behavior of the simms. But such a view isnot helpful in many ways. One of the issues that is raised is that of enormous complexity raised by such approach will render it meaningless. But, whether we can even describe a phenomena in a truly fundamental way, just by using basic laws is itself questionable.

A interesting reading in similar line of though is by Anderson (Anderson, P. W. (1972). More is different. Science, 177(4047), 393-396). He gives examples from physical science which seemingly defy solutions or explanations on basis of the fundamental laws. He strongly argues against the reductionist hypothesis

The main fallacy in this kind of thinking is that the reductionist hypothesis does not by .any means imply a “constructionist” one: The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe, In fact, the more the elementary particle physicists tell us about the nature of the fundamental laws, theless relevance they seem to have to the
very real problems of the rest of science, much less to those of society.

Anderson draws three inferences from this 1) Symmetry is of great importance to physics; symmetry the existence of different viewpoints from which the system appears the same. 2) the internal structure of a piece of matter need not be symmetrical even if the total state of it is.

I would challenge you to start from the fundamental laws of quantum mechanics and predict the ammonia inversion and its easily observable properties without going through the stage of using the unsymmetrical pyramidal structure, even though no “state” ever has that structure.

3) the state of a really big system does not at all have to have the symmetry of the laws which govern it; in fact, it usually has less symmetry.

Starting with the fundamental laws and a computer, we would have to do two impossible things – solve a problem with infinitely many bodies, and then apply the result to a finite system-before we synthesized this behavior

Finally Anderson notes:

Synthesis is expected to be all but impossible analysis, on the other hand, may be not only possible but fruitful in all kinds of ways: Without an understanding
of the broken symmetry in superconductivity, for instance, Josephson would probably not have discovered his effect.

Going back to Hofstadter, he considers a higher level view of the Gedankenexperiment with simms, simmballs and careenium. To get a birds eye view of our  have to zoom out both space and time. The view that we will get is that of simmballs, simms would be to small and too fast for us to view at this level. In fast forward of time, the simmballs are no longer stationary, but rather are dynamic entities which change their shapes and positions due to interactions of simms (now invisible) at lower level. But this is not evident at this level, though the simms are responsible for changing the shape and position of simmballs, they are irrelevant as far as description of simmballs.

And so we finally have come to the crux of the matter: Which of these two views of the careenium is the truth? Or, to echo the key question posed by Roger Sperry, Who shoves whom around in the population of causal forces that occupy the careenium? 49

The answer is that it all depends on which level you choose to focus on. The analogy can be made clear by thinking of how billions of interacting nuerons form patterns of thought, analogy, interacting ideas. Thus while trying to think about thinking we should let go of observing a single neuron, or the hardware of the brain itself, it will not lead us to any comprehensible description or explanation of how we think. Nuerons are though responsible for thinking they are irrelevant in the higher order of thinking.

 

 

On who controls who

PUNCH AND JUDY, TO THEIR AUDIENCE

Our puppet strings are hard to see,
So we perceive ourselves as free,
Convinced that no mere objects could
Behave in terms of bad and good.

To you, we mannikins seem less
than live, because our consciousness
is that of dummies, made to sit
on laps of gods and mouth their wit;

Are you, our transcendental gods,
likewise dangled from your rods,
and need, to show spontaneous charm,
some higher god’s inserted arm?

We seem to form a nested set,
with each the next one’s marionette,
who, if you asked him, would insist
that he’s the last ventriloquist.

-Theaodore Melnechuk

Politics Science Education or Science Education Politics or Science Politics Education

I am rather not sure what should be the exact title of this
post. Apart from the two options above it could have been any other
combination of these three words. Because I would be talking about all
three of them in interdependent manner.

If someone tells you that education is or should be independent of politics they, I would say they are very naive in their view about society. Education in general and formalised education in particular, which is supported and implemented by state is about political ideology that we want our next generation to have. One of the Marxian critique of state formalised education is that it keeps the current hierarchical structures untouched in its approach and thus sustains them. Now when we come to science education we get a bit more involved about ideas.

Science by itself was at one point of time assumed to be value-neutral. This line of though can be seen in the essays that some of us wrote in the schools with titles like “Science: good or bad”. Typically the line of argument in such is that by itself science is neither good or bad, but how we put it to use is what determines whether it is good or bad. Examples to substantiate the arguments typically involve some horrific incidents like the atomic bomb on one hand and life saving drugs on the other hand. But by itself, science is not about good or bad values. It is assumed to be neutral in that sense (there are other notions of value-neutrality of science which we will consider later). Scientific thought and its products are considered above petty issues of society and indiduals, it seemed to be an quest for eternal truth. No one questioned the processes or products of science which were assumed to be the most noble, rational, logical and superior way of doing things. But this pretty picture about scientific enterprise was broken by Thomas Kuhn. What we were looking at so far is the “normative” idea of science. That is we create some ideals about science and work under the assumption that this is how actual science is or ought to be. What Kuhn in his seminal work titled The Structure of Scientific Revolution was to challenge such a normative view, instead he did a historical analysis of how science is actually done ans gave us a “descriptive” picture about science, which was based on historical facts. Keeping up the name of the book, it actually revolutionised the way we look at science.

Now keeping in mind this disctinction between “normative” and “descriptive” views is very important. This is not only true for science but also for all other forms of human endeavours. People often tend to confuse or combine the two or many times are not even aware of the difference.

After Kuhn’s groundbreaking work entire new view about science its processes and products emerged. Various aspects of the scientific enterprise which were initially thought about outside purview of science or not affecting science came in to spotlight. Science was dissected and deconstructed from various points of view. Over the next few decades these ideas emerged into full fledged disciplies on their own. Some very valid criticisms of the scientific enterprise were developed and agreed upon. For example, the idea that there exists “the scientific method” was serisously looked into and was found to be too naive. A modified view was adopted in this regard and most of philosophers of science agreed that this is too restrictive a view. Added to this the post-modernist views about science may seem strange and bizzare at times to the uninitiated. This led to what many call as the “science-wars” between scientific realists and postmodernists. The scientific realists who believe that the world described by science is the real world as it is, independent of what it might be. So in this view it implies that there is objective truth in science and the world it describes is real. This view also implies that there is something like “scientific method” and it role in creating true knowledge about the world is paramount. On the other hand postmodernist critics don’t necessarily agree with this view of the world. For example they question the very idea of objectivity of the scientific world-view. Deriving their own meaning into writings of Kuhn (which he didn’t agree to) they claimed that science itself is a social construct and has nothing to do with the real world. The apparent supremacy of “scientific-method” in creating knowledge or presenting us about the world-views is questioned. The entire scientific enterprise from processes to products was deciphered from dimensions of gender, sexual orientation, race and class. Now, when you are teaching about science to learners there should be an awareness about these issues. Some of the issues are usually overlooked or have a logical positivist nature in them. Many philosophers lament that though considerable change has happened in ideas regarding scientific enterprise especially in philosophy of science, it seems corresponding ideas in science education are not up to date. And this can be seen when you look at the science textbook with a critical focus.

With this background I will go into the reasons that made me write this post and the peculiar multi-title. It seems for post-modernists and some others that learning about politics of science is more important than learning science itself. And they feel this is the neutral view and there is nothing political about it. They look at science as an hierarchical enterprise where gender, class and race play the decisive role, hence everyone should know about it. I am not against sharing the fact with learners of science that there are other world-views, what I am against is to share only a peculiar world view which is shaped completely by one’s ideology and politcal stance rather than by actual contents. Many of the people don’t actually know science, yet they feel that they are fully justified to criticise it. And most of these people would fall on the left side of the political spectrum (at least that is what their self-image is). But the way I see it is that these same people are no different from the right-wingers who burn books without reading them. The pomos may think of themselves as intellectually superior to the tilak-sporting people but they are not. Such is the state of intellectuals that they feel threatened by exclusion of certain articles or inclusion of certain other ones in reading courses. They then use all their might to restore the “balance”. At the same time they also tell us only they have some esoteric knowledge about these issues which people like me cannot have. And no matter what I do I will never be able to do what they can. Perhaps they have super powers which I don’t know about, perhaps in their subjective world view the pigs can fly and this fact can be proven by using other methods than the scientific ones. Last point I want to make in this is inspite of all the criticims of science and its products it doesn’t stop these people from refraining use of these products and technologies! This is hypocrisy, they will curse the phone or the computer if it doesn’t work, what they perhaps don’t realise is that it might be working just that the pomos are not able to see it in their worldview.

A quote from Dennett

I, too, want the world to be a better place. This is my reason for wanting people to understand and accept evolutionary theory: I believe that their salvation may depend on it! How so? By opening their eyes to the dangers of pandemics, degradation of the environment, and loss of biodiversity, and by informing them about some of the foibles of human nature. So isn’t my belief that belief in evolution is the path to salvation a religion? No; there is a major difference. We who love evolution do not honor those whose love of evolution prevents them from thinking clearly and rationally about it! On the contrary, we are particularly critical of those whose misunderstandings and romantic misstatements of these great ideas mislead themselves and others. In our view, there is no safe haven for mystery or incomprehensibility. Yes, there is humility, and awe, and sheer delight, at the glory of the evolutionary landscape, but it is not accompanied by, or in the service of, a willing (let alone thrilling) abandonment of reason. So I feel a moral imperative to spread the word of evolution, but evolution is not my religion. I don’t have a religion.

– Daniel Dennett, Breaking the Spell (p. 268)

A verse by Rumi

“All day I think about it, then at night I say it.
Where did I come from, and what am I supposed to be doing?
I have no idea.
My soul is from elsewhere, I’m sure of that,
and I intend to end up there.”  -Rumi

Equity Over Excellence

There is an interesting piece in The Atlantic by Sergey Ivanov on the education system in Finland. Though the article is written from a viewpoint of an American, there are a lot of take home points for everyone and particularly for India. In this post I am trying to make sense of this article from an Indian standpoint. Through out the post if you just insert India for America (which I have done at places), it at once catches. For the problems Indians are facing are also the problems of the Americans, as we have more or less tried to follow their model of education. The basic theme that underlies the article
is this:

The Scandinavian country is an education superpower because 
 it values equality more than excellence.

To many in the Indian context who believe that excellence must be given priority over equity this might be surprising. Surprising because it undermines a basic premise in their logic: that to excel in science and technology the only way is to promote excellence. In India there have been two distinct approaches to education, there is a clear stratification of the students based on standardized tests, and it is these tests which filter out students. But as the Finnish experience shows us that this need not be the case.

The newly found fame for Finland’s educational system comes after excellence of their students in the PISA scores since 2000. This seems paradoxical when we learn more about the educational system. The tried and trusted formulae of instructionism and rote-learning, which many people swear by, have almost no place there. The Finnish educational system seems like an educational philosophers utopian materialized in the real world.

To understand why it is working, the way it is, Indians will have to give away their long cherished beliefs about educational system. This would make the government more accountable towards education of the people. This is not just cosmetic school reform, but a revamping of the complete educational philosophy with which we are running the show.

One of the most intriguing (at least for me) things to notice is:

“Oh,” he mentioned at one point, “and there are no private schools in
Finland.”

This notion may seem difficult for an American (Indian?) to digest, but it’s true. Only a small number of independent schools exist in Finland, and even they are all publicly financed. None is allowed to charge tuition fees. There are no private universities, either. This means that practically every person in Finland attends public school, whether for pre-K or a Ph.D.

(emphasis added)

Now, this is interesting. What can we say about India? In fact over the years there has been general trend that we are seeing, that the number of private schools is increasing. And then there are branded schools which are spreading their networks across the country. Not to tell that they charge really hefty fees, and are meant for the elite. And so is the case with the colleges, each professional degree has a price tag, only people who can afford it, get those degrees. The haves not, the non-elites, who are mostly from the deprived classes, remain with almost no education. The government keeps on talking about reaching out to people, and by allowing the private schools colleges to exist, it is actually preventing people from joining in. Another aspect about this is that since there are alternatives to the government schools, the government schools themselves have no pressure to perform. And as any intelligent parents will tell you, it is better to put your child in a private school than a government one. Most of the parents who are in a financial position to put their children in private schools, do so.

How many parents do you know who have enrolled their children in government schools, even when they can afford private schools?

There was yet another interesting piece If You Send Your Kid to Private School, You Are a Bad Person in which the author makes a case that it is parents who are driving the change of declining government schools. If the educated parents make a sustained effort of challenging and helping government schools to improve, they will surely improve. The parents adopt the path of least effort, and send their children to private schools, which are supposed to be better. This automatically creates a class divide without asking.

Even among the private schools there is an hierarchy. There are international schools, convent schools etc. So the social stratification that exists, is just reflected in the school system. Seen from this perspective, one can understand why are the government schools neglected. They are neglected because the people who are influential and who are amongst the rich and powerful are never affected by the dismal state of the government schools. They have an alternate avenue for their children where these schools never come into picture.

There is another thing that is striking in the Indian system, that is of the coaching classes. I do not know if they are present in Finland or even anywhere in the world. But in India, the coaching classes have a complete parallel system of cracking the educational system. The amount money that the coaching classes do attract must be comparable to the amount Government of India spends on education. This is another avenue where the class divide comes in. Only people with enough finances can afford to send their children to the best coaching classes. But the more fundamental question to ask is:

Why do coaching classes exist in the first place?

The answer to this question is not easy and it related closely to the way in which Indians look at education and its practices. The coaching classes exist because there is a demand for them. And what do coaching classes achieve. Most of the coaching classes are aimed at helping students crack some standardized test or the other. But why do you need standardized tests? Some of the rhetorical questions that one might ask against this question are:

From his (Sasi’s) point of view, Americans (Indians) are consistently obsessed
with certain questions:

+ How can you keep track of students’ performance if you don’t test
them constantly?
+ How can you improve teaching if you have no accountability for bad
teachers or merit pay for good teachers?
+ How do you foster competition and engage the private sector?
+ How do you provide school choice?

The answers Finland provides seem to run counter to just about everything America’s (India’s) school reformers are trying to do. For example the introduction of CCE or Continuous and Comprehensive Examination introduced as part of NCF 2005 is one such reform. Similarly we have incentives in forms of awards for best teachers, and of course the best students get rewards like getting admission to the best colleges. Their parents are proud, schools are proud, and their coaching classes are also proud. This can be seen by the number of advertisements the coaching classes put up. But all the exams like IIT-JEE, AIEEE, Medical Exams, Olympiads, etc. are standardized tests. These are the parameters of excellence in the country. Similar tests are also found in the US, like GRE, TOEFL, SAT etc. One would assume the standardized tests in Finland would be of very great quality, but in reality they don’t exist there.

For starters, Finland has no standardized tests. The only exception is what’s called the National Matriculation Exam, which everyone takes at the end of a voluntary upper-secondary school, roughly the equivalent of American high school.

The very idea of standardized tests emerged in the shadow of the Second World War. The mass recruitment of troops required a mass approach, which resulted in production of tests. In his book The Tyranny of Testing physicist Banesh Hoffman, criticises the standardized tests that were prevalent in the US, and takes to task the leading makers of these tests on the fundamental premise of their objectivity. Similarly one can, question the fundamentals of the standardized tests in the country.

Can any standardized test be really objective?

Personally, I do not think so. None of the standardized tests, take into account multiple factors that a student has skills in. These tests make the process of filtering students easier for the administrators. But do they help students at all (except for getting admission to a desired institute)? Do they really test the understanding of the subject matter? Do they take into account various social factors that is part of the mileu of the students? As Banesh Hoffman says the only thing objective about these tests is that once, the students fills in the answer sheet, the grading is objective. But why is that the teachers who are actually teaching the students cannot test them? Why do we need standardized tests to test the students?

And here comes in the idea of academic flexibility in the schools. In India even most university department do not have academic flexibility. There is a central committee which decides, what is to be taught and a committee sets a test with which we grade the students. This creates a definite goal in form of “completing the syllabus” for the teachers. This is a malice which pervades the educational system of India from primary schools to university departments. The teachers are in a race to reach the finish line of the syllabus, because if they do not, the students might face questions which they were not taught.

Though the teacher is the representative of the entire educational system in the classroom, they are nothing more than, to use a term by Krishna Kumar, “meek dictators” in the classroom. The real dictators are adminitrators and decision makers sitting at the top of the educational system. This perhaps is a colonial mentality which has been deeply embodied in the Indian psyche. But in Finland what happens:

Instead, the public school system’s teachers are trained to assess children in classrooms using independent tests they create themselves. All children receive a report card at the end of each semester, but these reports are based on individualized grading by each teacher. Periodically, the Ministry of Education tracks national progress by testing a few sample groups across a range of different schools.

People say that then the teachers cannot be trusted that they will grade their students correctly. So how will they be held accountable?

As for accountability of teachers and administrators, Sahlberg shrugs. “There’s no word for accountability in Finnish,” he later told
an audience at the Teachers College of Columbia University. “Accountability is something that is left when responsibility has been subtracted.”

For Sahlberg what matters is that in Finland all teachers and administrators are given prestige, decent pay, and a lot of responsibility. A master’s degree is required to enter the profession, and teacher training programs are among the most selective professional schools in the country. If a teacher is bad, it is the principal’s responsibility to notice and deal with it.

This is where the responsibility of the Government comes in. Goverment slowly is trying to distance itself from its role in providing education to all its citizens. But if teachers are themselves left unsatisfied both monetarily and ideologically??, what results one can
expect. In this way the Government is indirectly encouraging the private schools and coaching classes, and thus making the class divide even more striking.

And while Americans (Indians) love to talk about competition, Sahlberg points out that nothing makes Finns more uncomfortable. In his book Sahlberg quotes a line from Finnish writer named Samuli Paronen: “Real winners do not compete.” It’s hard to think of a more un-American (Indian) idea, but when it comes to education, Finland’s success shows that the Finnish attitude might have merits. There are no lists of best schools or teachers in Finland. The main driver of education policy is not competition between teachers and between schools, but cooperation.

Compare this with the Indian attitude. Competition seems to be the key to everything and especially education. Where does collaboration of
cooperation enter in Indian educational scenario?

Finally, in Finland, school choice is noticeably not a priority, nor is engaging the private sector at all. Which brings us back to the silence after Sahlberg’s comment at the Dwight School that schools like Dwight don’t exist in Finland.

“Here in America (India), parents can choose to take their kids to private schools. It’s the same idea of a marketplace that applies to, say, shops. Schools are a shop and parents can buy what ever they want. In Finland parents can also choose. But the options are all the same.”

And in India there are coaching classes which prepare students to get into better coaching classes. With both private schools and the coaching class industry around the education and related services have been commercialised to furthest extent possible. This just works in the favour of the already existing class divide. Parents do choose best for their children, and thus do perpetuate the divide as they have no other choices.

Decades ago, when the Finnish school system was badly in need of reform, the goal of the program that Finland instituted, resulting in so much success today, was never excellence. It was equity.

This is the state of the educational system in India now. And with the over emphasis on the excellence part which addresses a small set of mostly elite students, the goal should be creating equal opportunities for equity. The idea of equity in the academic circles is unfortunately equated with that of sub-standard or below average. There are people who will tell you, that “Look, there are bright students, and they need special coaching.” The government has to spend the money of bright students, so as to make the country excel in education. This is done at the expense of the average students. One may ask the question, how in the first place do you know a student is bright? The answer comes from scores of the standardized tests, which are the root cause of many problems that the educational system in India is facing now. If one is serious about changing the educational scenario in the country this has to be addressed. Though there are champions of the standardized tests, in India as in the US of Amerika, they are the ones whose existence is based on such tests. Without these tests their existence becomes meaningless. It will certainly increase the workload of lot many people a lot many times. But the problems of magnitude of changing educational system in India is no mean problem and will require solutions of these magnitudes.

Since the 1980s, the main driver of Finnish education policy has been the idea that every child should have exactly the same opportunity to
learn, regardless of family background, income, or geographic location.

In the Indian scenario this seems to have been forgotten. And one of the main reasons for this is the presence of private schools and coaching classes where parents can shop for education.

Education has been seen first and foremost not as a way to produce star performers, but as an instrument to even out social inequality.

This particular quote is exactly opposite of what the Indian
educational system does by promoting academic excellence over equity.
And this also relates to the qualities that Indians cherish. If good
education is equated with chances of making good money, then we know
where we are wrong. With private schools and coaching classes the
education of a student becomes a balance sheet, which will be brought
to green from red by the money that student will make after
completing education.

In the Finnish view, as Sahlberg describes it, this means that schools should be healthy, safe environments for children. This starts with
the basics. Finland offers all pupils free school meals, easy access to health care, psychological counseling, and individualized student
guidance.

In case of India we have seen implementation of the mid-day meal scheme. But does it extend to the other domains?

In fact, since academic excellence wasn’t a particular priority on the Finnish to-do list, when Finland’s students scored so high on the
first PISA survey in 2001, many Finns thought the results must be a mistake. But subsequent PISA tests confirmed that Finland — unlike,
say, very similar countries such as Norway — was producing academic excellence through its particular policy focus on equity.

And with so much emphasis on coming on top of the class in India, we are getting what we are sowing. Surveys will tell you that students,
including even those from the best private schools in the country do fail in simple evaluation. But is this unexpected? If the entire
focus of the educational system is to pass standardized tests, why should we expect our students to be better in something else?

That this point is almost always ignored or brushed aside in the U.S. (India) seems especially poignant at the moment, after the financial crisis and Occupy Wall Street movement have brought the problems of inequality in America into such sharp focus. The chasm between those who can afford $35,000 in tuition per child per year — or even just the price of a house in a good public school district — and the other “99 percent” is painfully plain to see.

Though India is yet to undergo Occupy BSE protests, it is not long before this happens.

Some people may point out that Finland is a developed nation. It is much more homogeneous as compared to India. Here it might become more complicated than in the US, but the central argument should hold through.

Yet Sahlberg doesn’t think that questions of size or homogeneity should give Americans (Indians) reason to dismiss the Finnish example. Finland is a relatively homogeneous country — as of 2010, just 4.6 percent of Finnish residents had been born in another country, compared with 12.7 percent in the United States. But the number of foreign-born residents in Finland doubled during the decade leading up to 2010, and the country didn’t lose its edge in education. Immigrants tended to concentrate in certain areas, causing some schools to become much more mixed than others, yet there has not been much change in the remarkable lack of variation between Finnish schools in the PISA surveys across the same period.

The social conditions in India do not match those in Finland. We have many factors like, caste and religion, which do strongly affect our educational policies in practice, if not in theory. So is this comparison valid? But comparing Finland with an country whose demographics are similar, namely Norway, we find different results. Which shows it is the educational policy which determines the outcome, and not the demographics.

Like Finland, Norway is small and not especially diverse overall, but unlike Finland it has taken an approach to education that is more American than Finnish. The result? Mediocre performance in the PISA survey. Educational policy, Abrams suggests, is probably more important to the success of a country’s school system than the nation’s size or ethnic makeup.

And time and again it is said that India does not have enough money to spend on its enormous population. Looking at the amount of GDP that is spent on education India ranks spends 3.1% of GDP on education (2006), while the US spends 5.5% (2007) and Finland 5.9% (2007). A more updated list shows this hasn’t changed much in the intervening years. A look at the graph below from the World Bank Data on these matters makes the picture clear. Though Norway spends more than Finland on education, the results are poor. So if we assume that this is the control then it clearly shows it is not the amount of money you spend or your socio-economic status of the people that matter. What matters most is the way in which you have planned for education and its spending.

gdp-educationPeople tell you that most problems in Indian education system will go away if we have enough teachers! But why are not there enough teachers one may ask? Isn’t it funny that in a country which has second largest population in the world, we do not have enough government teachers? It is surely not a problem of human resources, but of will, both political and social. We do not want to spend more on education, and yet we expect the things to be better. And somehow government is willing to spend on private partners for education, a sort of outsourcing if you want. And with more and more Public Private Partnerships for education, government is just abdicating its responsibility, in the field of education as in other fields.

Finland’s experience suggests that to win at that game, a country has to prepare not just some of its population well, but all of its population well, for the new economy. To possess some of the best schools in the world might still not be good enough if there are children being left behind.

Problem in India is manifold.

“Finland’s dream was that we want to have a good public education for every child regardless of where they go to school or what kind of families they come from, and many even in Finland said it couldn’t be done.”

Clearly, many were wrong. It is possible to create equality. And perhaps even more important — as a challenge to the American (Indian) way of thinking about education reform — Finland’s experience shows that it is possible to achieve excellence by focusing not on competition, but on cooperation, and not on choice, but on equity.

(emphasis added)

The problem facing education in America (India) isn’t the ethnic diversity of the population but the economic inequality of society, and this is precisely the problem that Finnish education reform addressed. More equity at home might just be what America (India) needs to be more competitive abroad.

Most of us think that utopian ideas are not practicable. The talk about equity in education is essentially seen with that attitude. But the Finland example has just shown us that this is possible. Though it is definitely not to say that we blindly follow that model. But it seems that utopian things are possible, just that we will have to give up on long cherished notions of what we consider excellence as.

Open Access Manifesto

Information is power. But like all power, there are those who want to keep it
for themselves. The world's entire scientific and cultural heritage, published
over centuries in books and journals, is increasingly being digitized and locked
up by a handful of private corporations. Want to read the papers featuring the
most famous results of the sciences? You'll need to send enormous amounts to
publishers like Reed Elsevier. 

There are those struggling to change this. The Open Access Movement has fought
valiantly to ensure that scientists do not sign their copyrights away but
instead ensure their work is published on the Internet, under terms that allow
anyone to access it. But even under the best scenarios, their work will only
apply to things published in the future.  Everything up until now will have been
lost. 

That is too high a price to pay. Forcing academics to pay money to read the work
of their colleagues? Scanning entire libraries but only allowing the folks at
Google to read them?  Providing scientific articles to those at elite
universities in the First World, but not to children in the Global South? It's
outrageous and unacceptable. 

"I agree," many say, "but what can we do? The companies hold the copyrights,
they make enormous amounts of money by charging for access, and it's perfectly
legal - there's nothing we can do to stop them." But there is something we can,
something that's already being done: we can fight back. 

Those with access to these resources - students, librarians, scientists - you
have been given a privilege. You get to feed at this banquet of knowledge while
the rest of the world is locked out. But you need not - indeed, morally, you
cannot - keep this privilege for yourselves. You have a duty to share it with
the world. And you have: trading passwords with colleagues, filling download
requests for friends. 

Meanwhile, those who have been locked out are not standing idly by. You have
been sneaking through holes and climbing over fences, liberating the information
locked up by the publishers and sharing them with your friends. 

But all of this action goes on in the dark, hidden underground. It's called
stealing or piracy, as if sharing a wealth of knowledge were the moral
equivalent of plundering a ship and murdering its crew. But sharing isn't
immoral - it's a moral imperative. Only those blinded by greed would refuse to
let a friend make a copy. 

Large corporations, of course, are blinded by greed. The laws under which they
operate require it - their shareholders would revolt at anything less. And the
politicians they have bought off back them, passing laws giving them the
exclusive power to decide who can make copies. 

There is no justice in following unjust laws. It's time to come into the light
and, in the grand tradition of civil disobedience, declare our opposition to
this private theft of public culture. 

We need to take information, wherever it is stored, make our copies and share
them with the world. We need to take stuff that's out of copyright and add it to
the archive. We need to buy secret databases and put them on the Web. We need to
download scientific journals and upload them to file sharing networks. We need
to fight for Guerilla Open Access. 

With enough of us, around the world, we'll not just send a strong message
opposing the privatization of knowledge - we'll make it a thing of the past.
Will you join us? 

Aaron Swartz

July 2008, Eremo, Italy

via | Open Access Manifesto

Sharing knowledge and learning collaboratively at schools

(This article was written for a college magazine.)

We have a vision for a better society in which the values of sharing and collaborating knowledge and technical know-how form an integral part. There are two aspects to this issue. One is why it should be done, and given the current social structure how it can be done. Though the why question is as important as the how one in this article we will try to focus more on how it can be done with aid of proper technology and what are the possible implications of this intervention to the citizens of the future.

The current education system does little to promote and impart the ideas of sharing knowledge with peers to the students who will be the future citizens. In our educational system it is more like each-one-for-oneself; if you help your peers you will be at a loss in the future. Another aspect is that the educational system by its nature is consumerist. By consumerist we mean that the schools system treat the students more like consumers, who are then passively fed in what has already been produced by others. There is no or little scope left for students to produce or construct anything meaningful. So the platform/technology which will address these issues should have the following qualities:

  • It should be based on principles of Free Software (see http://gnu.org/education).
  • It should allow for collaboration / sharing of knowledge.
  • It should allow for active, meaningful and collaborative production / construction contexts, through which students will learn.
  • It should give immediate feedback to the student, not the delayed one (year end) which the current school system has. This is essential as it makes children reflective about the work that they are doing.

Learning in the context of constructing some tangible thing is a philosophy of education proposed by Seymour Papert, called constructionism. Constructionist learning is inspired by the constructivist theory that individual learners construct mental models to understand the world around them. However, constructionism holds that learning can happen most effectively when people are also active in making tangible objects in the real world. A closely related term that you might have heard is that of constructivism, but there are differences though.

The potential for transforming classrooms in a revolutionary way is present in the constructionist way of learning, which the existing CBTs (computer based tutorials) do not challenge but reinforce. The advances in technology have made it possible now to implement constructionist ways of learning to masses. So where are the examples of this?

The Sugar learning platform  is just one such example which is specifically developed keeping in mind the above considerations. But the idea of constructionist learning is not limited only to using computers. displayed. The very idea of the platform is centered around the idea of constructionism. Though initially developed for OLPC (One Laptop Per Child) Project, now it can run on almost all computers. Learning in an environment where sharing knowledge is an inherent principle rather than an added externality provides the students with a whole new way of learning. Each activity on Sugar is designed keeping in mind the collaborative, construction context and immediate feedback principles.

The Sugar platform provides construction contexts from different areas to learn collaboratively like language, mathematics, science, drawing, music, games, programming, photography, audio and video recording among other things. For each of this activity can be done collaboratively by the students and can be shared with others. This also provides students to make meaningful connections between different concepts. In this context we have seen a strong urge in the children to share the knowledge and activities that they have with others, but in the current school system there is no or little provision for this. Sharing of activities provides context for feedback from peers, which in turn is fruitful in improving learning. Thus we see that the tools and time is ripe for changing our perspective towards education for a more inclusive and better society, whose core values are sharing of knowledge and collaboration.

There are pilot projects of Sugar running at many places across India, one is the Khairat Project which is running successfully for past 4 years at a primary tribal school of first generation learners near Mumbai, another one is at Merces School near Panaji in state of Goa.

Public decency and morality

This is what Supreme Court of India had to say when petition was filed to lift a ban in 1964 on Lady Chatterley’s Lover by D.H. Lawrence:

It is convenient to set out s. 292 of the Indian Penal Code at this stage:

“292. Sale of obscene books etc. : Whoever- (a) sells, lets to hire, distributes, publicly exhibits or in any manner puts into circulation, or for purposes of sale, hire, distribution, public exhibition or circulation, makes, produces or has in his possession any obscene book, pamphlet, paper, drawing, painting, representation or figure or any other obscene object whatsoever, or

(b) imports, exports or conveys any obscene object for any of the purposes aforesaid, or knowing or having reason to believe that such object will be sold, let to hire, distributed or publicly exhibited or in any manner put into circulation, or

(c) takes part in or receives profits from any business in the course of which he knows or has reason to believe that any such obscene objects are, for any of the purposes aforesaid, made, produced, purchased, kept, imported, exported, conveyed, publicly exhibited or in any manner put into circulation, or

(d) advertises or makes known by any means whatsoever that any person is engaged or is ready to engage in any act which is an offence under this section, or that any such obscene object can be procured from or through any person, or

(e) offers or attempts to do any act which is an offence -under this section,

19(1) All citizens shall have the right-

(a) to freedom of speech and expression; (2) Nothing -in sub-clause (a) of clause (1) shall affect the operation of any existing law, or prevent the State from making any law, in so far as such law imposes reasonable restrictions on the exercise of the right conferred by the said sub-clause in the interests of public order, decency or morality”

No doubt this article guarantees complete freedom of speech and expression but it also makes an exception in favour of existing laws which impose restrictions on the exercise of the right in the interests of public decency or morality.

Condemnation of obscenity depends as much upon the mores of the people as upon the individual. It is always a question of degree or as the lawyers are accustomed to say, of where the line is to be drawn. It is, however, clear that obscenity by itself has extremely “poor value in the-propagation of ideas, opinions and informations of public interest or profit.” When there is propagation of ideas, opinions and informations of public interest or profit, the approach to the problem may become different because then the interest of society may tilt the scales in favour of free speech and expression. It is thus that books on medical science with intimate illustrations and photographs, though in a sense immodest, are not considered to be obscene but the same illustrations and photographs collected in book form without the medical text would certainly be considered to be obscene.

“I think the test of obscenity is this, whether the tendency of the matter charged as obscenity is to deperave and corrupt those whose minds are open to such immoral influences, and into whose hands a publication of this sort may fall. . . . . it is quite certain that it would suggest to the minds of the young of either sex, or even to persons of more advanced years, thoughts of a most impure and libidinous character.”

He wants us to say that a book is not necessarily obscene because there is a word here or a word there, or a passage here and a passage there which may be offensive to particularly sensitive persons. He says that the overall effect of the book should be the test and secondly, that the book should only be condemned if it has no redeeming merit at all, for then it is “dirt for dirt’s sake”, or as Mr. Justice Frankfurter put it in his inimitable way “dirt for money’s sake.

We need not attempt to bowdlerize all literature and thus rob speech and expression of freedom. A balance should be maintained between freedom of speech and expression and public decency and morality but when the latter is substantially transgressed the former must give way.

The taboo on sex in art and literature which was more strict thirty-five years ago, seemed to him to corrode domestic and social life and his definite view was that a candid discussion of sex through art was the only catharsis for purifying and relieving the congested emotion is.

“The law seeks to protect not those who protect themselves, but those whose prurient minds take delight and sexual pleasures from erotic writings.”

via | Ranjit D. Udeshi vs State Of Maharashtra on 19 August, 1964

The word “obscene” in the section is not limited to writings, pictures etc. intended to arouse sexual desire. At the same time the mere treating with sex and nudity in art and literature is not per se evidence of obscenity.

Exception. – This section does not extend to any book, pamphlet, writing, drawing or painting kept or used bona fide for religious purposes or any representation sculptured, engraved, painted or otherwise represented on or in any temple, or on any car used for the conveyance of idols, or kept or used for any religious purpose.”

This was I think long back, but the views have not changed ever since the. The idea that somethings are bad for everyone is something which all cultures adhere to, and it is very hard for people, especially people in power to let this notion go. This is another way of controlling people. This is what is common to fundamentalism and democracy. The notion that our past was a golden one, and anything new will harm it and jeopardize the future of the culture. From what I feel is that there was no golden past, it just was.

And thinking about morality, though they say that there are some universal principles, everyone does not subscribe to same ones. In his theory Kohlberg, outlines these differences. But that said, he does not talk about obscenity, which I think it is highly cultural. For example a burqa clad woman is a common picture in certain Islamic communities, or a woman with ghunghat is all but common in certain Hindu communities, but at the same time some people might be find it too restrictive. And a woman in short skirt might be a common scene in the urban areas in certain countries, but it might be a great taboo for some others. There are no universal standards for what counts as moral or decent.

 

 

Does Tulsi has environmental benefits too?

Recently there was a news item in Times of India which had the same heading as that of this particular post. The news claimed

(Around two decades back Dada Dham, a socio-spiritual organization brought together a team of botanists, ayurvedic scholars and environmental enthusiasts to study the environmental benefits of tulsi.)

NAGPUR: Ayurvedic medicinal values of Tulsi are well known. Our ancient scriptures have enumerated the medicinal benefits of tulsi. Its extracts are used widely for curing common ailments like common cold, headache, stomach disorder etc.

But the environmental benefits have been comparatively unknown. Around two decades back Dada Dham, a socio-spiritual organization brought together a team of botanists, ayurvedic scholars and environmental enthusiasts to study the environmental benefits of tulsi.

Now the next claim from an “eminent botanist” that the report does is startling indeed.

“Tulsi gives out oxygen for 20 hours and ozone for four hours a day along with the formation of nascent oxygen which absorbs harmful gases like carbon monoxide, carbon dioxide and sulphur dioxide from the environment,” said Shyamkant Padoley, an eminent botanist.
How would the tulsi plant (Ocimum tenuiflorum) do this? Is it anatomically so different that it is capable to do this? How does the plant regulate this 20 and 4 hour cycle?  I would really like to know. How is that no other plants have this cycle? How did they detect presence of ozone, what detectors they used? What mechanisms in presently known cycle of photosynthesis account for this cycle? And if this is part of the standard photosynthesis process, then all plants should have it. This seems fishy, and a most preliminary search did not yield any positive result. All of them talk about production of oxygen and not ozone, as reported by Padoley. And if this is indeed true, it might lead to change in our conception of the photosynthetic cycle.
And if the ozone report is to be believed at all then this is what ozone does to you quote from Wikipedia article on ozone:
Ozone is a powerful oxidant (far more so than dioxygen) and has many industrial and consumer applications related to oxidation. This same high oxidizing potential, however, causes ozone to damage mucus and respiratory tissues in animals, and also tissues in plants, above concentrations of about 100 parts per billion. This makes ozone a potent respiratory hazard and pollutant near ground level.
There is evidence of significant reduction in agricultural yields because of increased ground-level ozone and pollution which interferes with photosynthesis and stunts overall growth of some plant species. The United States Environmental Protection Agency is proposing a secondary regulation to reduce crop damage, in addition to the primary regulation designed for the protection of human health.
There is a great deal of evidence to show that ground level ozone can harm lung function and irritate the respiratory system.Exposure to ozone and the pollutants that produce it is linked to premature death, asthma, bronchitis, heart attack, and other cardiopulmonary problems.
Ozone is air pollutant, green house gas.
To summarize this is that ozone is NOT GOOD for us at ground level! It may do us good in upper atmosphere to block UV Rays, but down here on ground it is bad. And if this claim of ozone production by Tulsi is true why is the campaign of “Tulsi lagao pradushan hatoa (Plant tulsi, remove pollution)” which follows in the article is being implemented?

Padoley, member of technical committee, ministry of environment and forest, NewDelhi, and forest tech committee, also read a paper at the International Conference on Occupational Respiratory Diseases at Kyoto in 1997 where cyclo oxygenate, an enzyme only found in tulsi was labelled for the first time. This enzyme regulates the entire mechanism of oxygen evolution. (emphasis added)

This again I am unable to understand. It says this enzyme is “only found in Tulsi”, and it also “regulates entire mechanism of oxygen evolution”. One can agree that a particular enzyme is found in a particular plant, but if this enzyme controls “entire mechanism of oxygen evolution”, how do other plants regulate their mechanisms of oxygen evolution.

Dada Dham initiated a campaign ‘Tulsi Lagao Pradushan Hatao’ in 1987 under the guidance of Narendra Dada, the institution’s head. It was under this campaign that the above mentioned panel of experts was formed. After finding out the environmental benefits of the plant, Dada Dham organized a number of programmes like street plays, nukkad sabhas and lectures to propagate the use of the plant.

Dr Dattatraya Saraf, an ayurvedic doctor and expert said, “The plant enriches the environment with oxygen almost 24X7 and also absorbs other pollutants.” He further added that if the size of the plant can be increased, the environmental benefits can be increased.

This statement that “plant enriches the environment with oxygen almost 24X7” is in contradiction to statement by above Padoley regarding 20 and 4 hour cycles. Which one is to be believed? And mind you this is just appearing a few lines later, this is either very poor editing and reporting, or hogwash to the public.

“That is why we want to urge scientists and concerned authorities to make research on the issue of increasing the height of tulsi plant. If big trees can be converted to bonsai plants then big tulsi trees can be possible too,” said Kishor Verma, PRO of Dada Dham.

This is another statement that I would like to contest. Did they compare the rate of oxygen production vis-a-vis to other plants. That is to say simply did they have any control sample? And does making “tulsi tree” make any sense (can one really do it is another question), will it really increase oxygen making capabilities, is it a linear relationship between these two variables? The water is completely muddy in this !

He also citied the research and work by other organization in support of tulsi’s environmental benefits.

“The forest department of Uttar Pradesh, with the help of an organization called Organic India Limited, Lucknow planted lakhs of tulsi saplings around Taj Mahal to protect its surface from industrial emissions. This step has yielded positive results,” Verma said.

“We are just asking the administration to take notice of these extra ordinary benefits of tulsi and take steps for utilizing them. Even simple steps like planting tulsi plants on road dividers, parks etc can bring a difference,” said Verma.

The reporter and also the editor make no effort to correct these glaring inconsistencies in the report itself, forget about doing nay research on the topic, or verifying the claims made by these people. Maybe this was like the paid news that is talked about a lot these days.

What I find here i that the agenda of what is to be done was already set, the conclusions were already drawn, by our ancestors, written in black and white in ancient texts. The point was only to justify what they were doing, and trying to provide a “scientific basis” of what they already believed to be true (for whatever reasons, mostly religious, and presence of a religious organization in this sort of confirms this).

A good example of  pseudo-science and bad science reporting.

Science, a humanistic approach

Science is an adventure of the whole human race to learn to live in and perhaps to love the universe in which they are. To be a part of it is to understand, to understand oneself, to begin to feel that there is a capacity within man far beyond what he felt he had, of an infinite extension of human possibilities . . .
I propose that science be taught at whatever level, from the lowest to the highest, in the humanistic way. It should be taught with a certain historical understanding , with a certain philosophical understanding , with a social understanding and a human understanding in the sense of the biography, the nature of the people who made this construction, the triumphs, the trials, the tribulations.

I. I. RABI
Nobel Laureate in Physics

via Project Physics Course, Unit 4 Light and Electromagnetism Preface

Do see the Project Physics Course which has come in Public Domain hosted at the Internet Archive, thanks to F.  James Rutherford.

Reason and Faith – Misconceptions in Science Education

Reason does not work in matters of faith. But it may have a chance at clearing misconceptions.

via Tehelka

Truly so. In case of my field of study, namely science education research, it may be the other way round. The classic studies in science education aim at identifying the misconceptions that the learners have regarding a particular subject and then finding a mechanism by which they could be addressed.

This was a very simple but very basic presentation of  what most studies try to achieve, though the methodology may be different. There are some studies which present us with a conceptual framework so that all the responses and the problems with the learners can be seen in light of a theoretical construct. This they say will enable us to make sense of what we see in the classrooms, and what is present as representation in the learners mind. What I think they are trying to say is that we need to get to the conceptual structures that lead to formation of the misconceptions.

Now mind you that many of these misconceptions in science are very stubborn and people are very reluctant to give them up. The reason may be that many of these misconceptions come from direct factual experience in the real world. And from what I know about Philosophy of Science, we might want to make a case that all science is counter-intuitive to our everyday experience. This would explain why misconceptions in science arise. But would this case explain all the known misconceptions?

Let us do some analysis of how a particular misconception might arise.There can be two different reasons for a misconception to arise, if we adhere to deductive logic. That is to say we assume that we have a set of starting statements that are given, whose authenticity is not questioned. And from these set of statements we make certain deductions regarding the world out there. Now there can be two problems with this scenario, one is that the set of statements that we are taking for granted might be wrong, the other is that in the process of deduction that we have followed we made a mistake. The mistake is learnt only when the end result of our analysis is not consistent with the observations in the real world. Or it might be even the case that the so called misconception will lead to a correct answer, at least in some cases.  In these cases we have to resort to more detailed analysis of the thought structure which lead to the answers. Another identifying characteristic of the misconceptions is presence of the inconsistencies across different areas known to the learners. Whereas they might get a particular concept clearly and correctly, in applying same thing for another concept they just might revert to a completely opposite argument and in doing this they do not realise the inconsistency.

We will be clearer on this issue when we talk with a few examples. Suppose that we have a scenario in which we are trying to understand the phenomena of day and night, its causes and consequences. A typical argument in our class goes like this:

How many have seen the Sun set?

Almost all hands would go up, then comes the next question:

How many have seen the Sun rise?

Almost same number of hands go up, excepting a few, who are late risers like me. Some of the more intelligent and the more knowledgeable would say,

“Wait! Sun doesn’t rise and set, it is the Earth that is moving, so it causes the apparent motion of Sun across the sky, the start and end of which we call as day and night. So in conclusion the Sun doesn’t rise and set, it is an illusion created by motion of Earth.”

To this all of the class agrees. This is what they have learned in the text-book, and mind you the text-book represents truth and only truth, nothing else. It is there to dispel your doubts and misconceptions and is made by a committee of experts who are highly knowledgeable about these things. Now let us continue this line of reasoning and ask them the next question in this series.

Does the Moon rise? If so, does it rise everyday?

The responses to this question are mixed. Most of them would say that it does not rise, it is always there, up in the sky. Some would gather courage and say that it does rise.

Does the Moon set?

Again to this the response is mixed, and mostly negative. Most of them are adamant about the ever presence of the moon in the sky. The next question really upsets them

Do the stars rise and set?

Now this question definitely gets a negative response from almost all of them. Even the more knowledgeable ones fall. They have read different parts of the story, but have not connected them. They tell you the following: “No the stars do not move, they are there all the time.” They also tell you that there is something called as the fixed stars and this is in the text-book, which cannot be wrong. And when asked:

Why are we not able to see the stars during the day time?

They tell you “Of course you cannot see the stars during the day time. This is because our Sun, which is also a star, is too bright and the other stars too far away and hence are dim. So our Sun’s brightness, overwhelms the other stars, and hence they are not visible during the day time, but they are there nonetheless. In the night time, since the Sun is no longer visible, the stars become visible. Have you never noticed that during the evening twilight the stars become visible one by one, the brighter ones first. Whereas in the morning the brightest are the last ones to disappear.”

Of course, the things said above and the reasoning given sounds good. So much so that the respondents are convinced that they understand how things work, and have an elaborate reasoning mechanism to explain the observed things, in this case the formation of day and night and appearance / disappearance of stars during night and day respectively.

You ask them:

Don’t you think there is a problem with what you have just said?

“Where is the problem?”, they tell you. “We just explained scientifically how things are in heaven.”

Then you open the Pandora’s box,

“Well you have just said that the Sun doesn’t move really, it is the Earth that moves, and hence we see the apparent Sun rise and Sun set.”

Then they say, “Yes, that is the case. The Sun doesn’t move, but the Earth does.”

You ask, “How do you know this? Do you see that the Earth is moving?”

They say, “The textbook tells us so ” Some of the more knowledgeable ones say that “Galileo proved that the Earth moves and not the Sun. Since we are on Earth, we see only apparent motion of the Sun.”

You say: “But wait, just now you said that the Moon does not move, it is always in the sky. Also you said that the stars do not move, they are there all the time. Now if the Earth moves, then all these bodies should also move, if only, apparently.Then the stars must also move, just like the Sun does, do not forget that Sun is a star too! So other stars should also just set and rise like the Sun, and so should also the Moon!”

Or you can argue just the opposite: “I claim that it is the Sun that moves, Earth does not move. Isn’t it a lot more easier to explain this way, why we do see the Sun moving, because it moves. And we anyway do not see Earth moving! How will disprove me?”

Then the grumbles start. They have never thought about this. They knew the facts, but never connected them. This lead to the misconceptions regarding these things. They were right in parts, but never got a chance to connect the dots, metaphorically speaking.The reason for these misconceptions is the faith in the text-books, but if the text-books fail to perform the job of asking them the right question, where the reasoning alone can get rid of many of the misconceptions.

If we choose the alternative question, of challenging them to disprove that the Earth is stationary, almost most of them are unable to answer the question of disproving that the idea that the Sun moves and not Earth. They would suggest that we can see this from the satellite in the sky (Can we really?).

Most of us take the things for granted and never question many (or as in most cases, any) of them. And many times the facts are something we do not question. We say that “It is a fact.” This statement basically posits that the information which we think is out there can be unquestionable. But there are many flavours of the post-modern philosophy which challenge this position. They think that the facts themselves are relative, that is to say that one culture has different science than another one.  But let us leave this, and come back to our problem of the stars and the Sun and Moon.

Lets put out the postulates for the above arguments and try to deduce deductively the results that were obtained.

Claim 1: Sun doesn’t move.

Claim 2: Earth moves.

Observation 1: We see the Sun moving across the sky daily, it rises and it sets.

Explanation 1:  Since the Earth moves, and the Sun is stationary, we see that Sun moves apparently. This apparent motion of the Sun is seen as the Sunrise and the Sunset by us. This is what causes the day and night.

But we can have Observation 1 explained by another set of claims, which is exactly opposite, namely, that the Earth doesn’t move but the Sun moves.

Claim 3: The Sun moves.

Claim 4: The Earth does not move.

Explanation 2: Since the Earth does not move, and the Sun does, we just see the Sun passing by in the sky, around the Earth. This causes day and night.

We see that Explanations 1 and 2 are both valid for Observation 1, if the claims 1 and 2, 3 and 4 are true then the respective deductions from them, in this case the Explanations 1 and 2 respectively are also true.So in this case the logical deduction is correct, provided that the Claims or assumptions are correct. But this process does not tell you whether the claims themselves are true or not. But both set of assumptions, cannot be true at the same time. Either the Earth moves or it does not, it cannot be in a state of both. If at all we had an explanation which came from these assumptions which did not correspond with the observations, but was logically deducible, then we can question the assumptions or premises as philosophers call them.

Of course, the things said above and the reasoning given sounds good. So much so that the respondents are convinced that they
understand how things work, and have an elaborate reasoning mechanism

We can have one example of this type.

Assumption 5: Stars do not move, there are so called “fixed stars”.

Assumption 5: During the day time the Sun is too bright, as compared to the other stars.

Now in this case combining Assumption 5 (A5) with Observation 1 (Ob1) we would get the following:

Explanation 3: The stars are too dim as compared to Sun, hence we cannot see them during the day time, but they are present. Hence they do not move.

In Explanation 3 (E3) above the deduction has a problem. The deduction does not follow from the assumption. This is the other problem in which we talked about above.

Most of the people who would suggest these responses have mostly no background in astronomy. Even then the basic facts that Earth goes round the Sun and not the other way round are forced upon them, without any critical emphasis on why it is so. Neither are they presented at point with the cognitive struggle of another view point, namely the geo-centric view. So presenting the learners with opportunities that will make them observe things and make sense of the explanations in light of the assumptions that were made, will enhance the reasoning and help them to overcome some of their misconceptions.

But there is another observation which can be made of the skies. And it can be either done in the classroom with the aid of Free Softwares like Stellarium. After the round of above questions, we usually show the class the rising of the stars from the east. In a darkened room with a projector the effect is quite dramatic for those who have not witnessed such a thing before. So you can show the class, just as the Sun rises, all other celestial bodies like the Moon and the stars also must rise and this is an observed fact.

Observation 2: The stars and planets and the Moon also rise and set everyday.

So how do we make sense of this observation, Ob2 in the light of the assumptions that we have.

Assumption 6: Sun is a star.

Explanation 4: We observe that Sun moves during the day, from East to West. Sun is a star, hence all other stars should also move.

Now why this should be the case will be different for the geo-centric and the helio-centric theories. In case of H-C theory the explantion is simple. The Earth moves hence the stars appear to move in the opposite direction. And this applies to all the objects in the sky.

Since the Earth moves all other celestial objects will appear to move. In case of G-C theory we have to make an assumption that the
stars are “fixed” on some imaginary sphere, and the sphere as a whole rotates.

But coming back to the misconceptions, it is just the ad-hoc belief that the stars do not move (“fixed stars”) in conjunctions with another observation that in presence of too bright objects dim objects cannot be seen leads to belief that the stars are immobile and do not rise and set as the Sun does. There is another disconnection from another fact that they know, or are told in the textbooks, that  the apparent movement of the Sun is caused by the actual movement of  the Earth. There is no connection between these two facts which is  made explicit.

We think that providing opportunities for direct observation aided by software, Stellarium in this case, which help in visualizing the movements of celestial bodies will help in developing the skill of reasoning and explaining an observed phenomena.

Wikipedia | New Politics Of Knowledge

Professionals are no longer needed for the bare purpose of the mass distribution of information and the shaping of opinion. The hegemony of the professional in determining our background knowledge is disappearing—a deeply profound truth that not everyone has fully absorbed.

In their view, Wikipedia represents the democratization of knowledge itself, on a global scale, something possible for the first time in human history.

As wonderful as it might be that the hegemony of professionals over knowledge is lessening, there is a downside: our grasp of and respect for reliable information suffers.  With the rejection of professionalism has come a widespread rejection of expertise—of the proper role in society of people who make it their life’s work to know stuff.

For instance, journalists, interviewers, and conference organizers—people trying to gather an audience, in other words—use “expert” to mean “a person we can pass off as someone who can speak with some authority on a subject.”  Also, we say the “local expert” on a subject is the person who knows most, among those in a group, about the subject.  Neither of these are the very interesting senses of “expert.”

To exclude the public is to put readers at the mercy of wrongheaded intellectual fads; and to exclude experts, or to fail to give them a special role in an encyclopedia project, is to risk getting expert opinion wrong.

If we reject the use of credentials, we reject all evidence of expertise; ergo, lacking any means of establishing who is an expert, we reject expertise itself.  Meritocrats are necessarily expert-lovers.

Experts know particular topics particularly well.  By paying closer attention to experts, we improve our chances of getting the truth; by ignoring them, we throw our chances to the wind.  Thus, if we reduce experts to the level of the rest of us, even when they speak about their areas of knowledge, we reduce society’s collective grasp of the truth.

via On The New Politics Of Knowledge | Conversation | Edge

On the brighter side of it, we are for the first time able to participate in many things. Just being trained in a discipline (PhD?) does not automatically create opportunities for one in the old system. But in Wikipedia it does. How many people who have PhD do get an opportunity to write a text-book or a popular article? I would like to ask how many of contributors on Wikipedia are really subject experts? There might be many, and they would be able to point at the right evidence, when needed to “show off” their authority in the field, which the normal user won’t be. So what’s the fuss about?

 

 

The PhD Octopus

Thus, we at Harvard are proud of the number of candidates whom we reject, and of
the inability of men who are not distingues in intellect to pass our tests.

This is something the American philosopher and psychologist William James wrote in the Harvard Monthly of March 1903 The Ph.D. Octopus.

Brilliancy and originality by themselves won’t save a thesis for the doctorate; it must also exhibit a heavy technical apparatus of learning; and this our candidate had neglected to bring to bear.

To our surprise we were given to understand in reply that the quality per se of the man signified nothing in this connection, and that the three magical letters were the thing seriously required. The College had always gloried in a list of faculty members who bore the doctor’s title, and to make a gap in the galaxy, and admit a common fox without a tail, would be a degradation impossible to be thought of.

"This must be a terribly distinguished crowd,-- their titles shine like the stars in the 
firmament; Ph.D.'s, S.D.'s, and Litt.D.'s bespangle the page as if they were sprinkled 
over it from a pepper caster."

“No instructor who is not a Doctor” has become a maxim in the smaller institutions which represent demand; and in each of the larger ones which represent supply, the same belief in decorated scholarship expresses itself in two antagonistic passions, one for multiplying as much as possible the annual output of doctors, the other for raising the standard of difficulty in passing, so that the Ph.D. of the special institution shall carry a higher blaze of distinction than it does elsewhere. Thus, we at Harvard are proud of the number of candidates whom we reject, and of the inability of men who are not distingues in intellect to pass our tests.

But the institutionizing on a large scale of any natural combination of need and motive always tends to run into technicality and to develop a tyrannical Machine with unforeseen powers of exclusion and corruption.

First of all, is not our growing tendency to appoint no instructors who are not also doctors an instance of pure sham? Will any one pretend for a moment that the doctor’s degree is a guarantee that its possessor will be successful as a teacher? Notoriously his moral, social, and personal characteristics may utterly disqualify him for success in the class-room; and of these characteristics his doctor’s examination is unable to take any account whatever. Certain bare human beings will always be better candidates for a given place than all the doctor-applicants on hand; and to exclude the former by a rigid rule, and in the end to have to sift the latter by private inquiry into their personal peculiarities among those who know them, just as if they were not doctors at all, is to stultify one’s own procedure.

The truth is that the Doctor-Monopoly in teaching, which is becoming so rooted an American custom, can show no serious grounds whatsoever for itself in reason. As it actually prevails and grows in vogue among us, it is due to childish motives exclusively. In reality it is but a sham, a bauble, a dodge, whereby to decorate the catalogues of schools and colleges.

We advertise our “schools” and send out our degree-requirements, knowing well that aspirants of all sorts will be attracted, and at the same time we set a standard which intends to pass no man who has not native intellectual distinction.

It forms an interesting reading considering this is what we are exactly doing and what is happening around us. For example the rule that prevents permanent appointments in colleges if the candidate is without a PhD. Or for that matter the ‘stamping’ that happens if you are from a so called privileged institute.

As the first quote that I have used from the article, summarizes the way our society recognize academic talent. If you are the selected ones from 10,000 odd people then indeed you are smart and the institute that selects you is indeed greatest. The ratio of the people applying for the courses to the ones that are actually accepted forms a good indicator of the ‘quality’ of the institute. The same institutes when choosing a faculty would apply even higher standards and even more people with decorations, on the list.

Thinking Humans

There is at least one philosophical problem in
which all thinking men are interested: the problem of under-
standing the world in which we live, including ourselves,who are
part of that world, and our knowledge of it.
– Karl Popper

Conjectures and Refutations

Sophie’s World

I had heard about Sophie’s World from quite a number of sources. Finally I got a worn out copy from Fort for 100 bucks. Finished it in the next couple of days. This was about two years back. It is one of the best bedside introductions to philosophy…
Embedded in mystery and weirdness.
The best part of the climax is a p”hilosophical party”, which I also wish to have…

 Quotes:

Who are you?

“You are me.”

“I am you.”

You can’t experience being alive without realizing that you have to die, she thought.

Where does the world come from?

How could it be “the easiest way”?

… the only thing we require to be good philosophers is the faculty of wonder…

Why was it so difficult to be absorbed in the most vital and, in a way, the most natural of all questions?

So it is easier to ask philosophical questions than to answer them.

Actually, we are the white rabbit being pulled out of the hat.

and anyway it would be pointless to chase after someone who was determined to get away.

It all has to do with habit.

Do you think it can do what it does?

A philosopher never gets quite used to the world.

She understood that people had always felt a need to explain the processes of nature. Perhaps they could not live without such explanations. And that they made up all those myths in the time before there was anything called science.

… nothing can come from nothing …

Once we have determined what a particular philosopher’s project is, it is easier to follow his line of thought, since no one philosopher concerns himself with the whole of philosophy.

How can I “see” a flower, for example?

You probably wouldn’t admire a friend who was good at everything if it cost her no effort.

She decided that philosophy was not something you can learn; but perhaps you can learn to think philosophically.
 Why is Lego the most ingenious toy in the world?

Why did people quit playing when they grew up?

“I’m not playing!” Sophie retorted indignantly, “I’m doing a very complicated philosophical experiment!”

Do you believe in Fate?
Is sickness the punishment of the gods?
What forces govern the course of history?

Who had the right to call other people’s belief superstition?

One day we will meet, but I shall be the one to decide when and where.

Thus the “fortune-teller” is trying to foresee something that is really quite unforeseeable.
This is characteristic of all forms of foreseeing. And precisely because what they “see” is so vague, it is hard to repudiate fortune-tellers’ claims.

Over the entrance to the temple at Delphi was a famous inscription: KNOW THYSELF! It
reminded visitors that man must never believe himself to be more than mortal—and that no man can escape his destiny.

…wisest is she who knows she does not know…

Is there such a thing as natural modesty? 
Wisest is she who knows she does not know… 
True insight comes from within. 
He who knows what is right will do right.

But today, most people think it is “natural,” even though
it is still strictly forbidden in lots of countries.

 But the more she did, the more clearly she saw that knowing what you don’t know is also a kind of knowledge.

But didn’t all knowledge come into people’s heads from the outside?

The history of ideas is like a drama in many acts.

In order for democracy to work, people had to be educated enough to take part in the
democratic process.

“The question is complex and life is short.”

Modesty—or the lack of it—is first and foremost a matter of social convention.

“You can seek him in the present, you can seek him in the past, but you will never find
his equal.”  on Socrates

So it is no easy matter to distinguish between the teachings of Socrates and the philosophy of Plato.

Socrates saw his task as helping people to “give birth” to the correct insight, since
real understanding must come from within. It cannot be imparted by someone else. And only
the understanding that comes from within can lead to true insight.

Something within him left him no choice.

A  “philosopher” really means “one who loves wisdom.”

A philosopher knows that in reality he knows very little.

…it troubled him that he knew so little.

“One thing only I know, and that is that I know nothing.”

Any one question can be more explosive than a thousand answers.

All he knew was that he knew nothing—and it troubled him. So he became a
philosopher—someone who does not give up but tirelessly pursues his quest for truth.

Can you live a happy life if you continually do things you know deep down are wrong?

“We don’t learn anything there. The difference between schoolteachers and philosophers is that school-teachers think they know a lot of stuff that they try to force down our throats. Philosophers try to figure things out together with the pupils.”

“It’s not him who’s disturbed. But he likes to disturb others—to shake them out of their rut.”

… several tall buildings had risen from the ruins …

 We still speak of Socratic or Platonic philosophy, but actually being Plato or Socrates is quite another matter.”

 Plato’s four tasks.
 First you must think over how a baker can bake fifty absolutely identical cookies.
 Then you can ask yourself why all horses are the same.
 Next you must decide whether you think that man has an immortal soul.
 And finally you must say whether men and women are equally sensible.

 … a longing to return to the realm of the soul…

Because even though some horses were as brown as bears and others
were as white as lambs, all horses had something in common.

All she knew was that dead bodies were either
cremated or buried, so there was no future for them.

Why are horses the same, Sophie? You probably don’t think they are at all. But there is
something that all horses have in common, something that enables us to identify them as
horses. A particular horse “flows,” naturally. It might be old and lame, and in time it will die. But
the “form” of the horse is eternal and immutable.

Because clearly, the mold itself must be utter perfection—and in a sense, more beautiful—in comparison with these crude copies.

… the girl in the mirror winked with both eyes…

Was it the path she had taken earlier?

How could a person who had never seen a live chicken or a picture of a chicken ever have any “idea” of a chicken?

What came first—the chicken or the “idea” chicken ?
Are we born with innate “ideas”? What is the difference between a plant, an animal, and a human? 
Why does it rain? 
What does it take to live a good life?

…a meticulous organizer who wanted to clarify our concepts …

You’ll have to content yourself with the fact that you are not the only one who can’t exceed your own limits.

Everybody is more or less peculiar. I am a person, so I am more or less peculiar. You have only one girl, so I am the most peculiar.

Common sense and conscience can both be compared to a muscle. If you don’t use a muscle, it gets weaker and weaker.”

The world is me, she thought.

And as you know, when a thing gets bigger and bigger it’s more difficult to keep it to yourself.

It is the only way to become more than a naked ape. It is the only way to avoid floating in a vacuum.

… going only part of the way is not the same as going the wrong way…

Sorry. My lips are sealed.”

But she had been nervous, and when you’re nervous its comforting to break all taboos.

“It’s easy to know better after the fact.”

We shall become better acquainted by and by

But philosophy is not a harmless party game.

One generation ages while another generation is brought forth.

Life is both sad and solemn. We are let into a wonderful world, we meet one another here, greet each other—and wander together for a brief moment. Then we lose each other and disappear as suddenly and unreasonably as we arrived.

“It’s not a silly question if you can’t answer it.

“Does all this really matter?” “Does it matter? You bet it matters!

“Smart. But not so smart really.”

“Is it really as simple as that?”

For the wages of sin is death.

That was a serious slip of the tongue.”
“But a slip of the tongue is never wholly accidental.”

…such stuff as dreams are made on…

She knew her mother knew that Sophie knew her mother wouldn’t believe it either.

“No, there’s a lot I don’t know.”

“Well, nearly everything that’s important comes either from Greece or from Italy.”

That was actually quite a lot in the space of one second.

carpe diem’—‘seize the day.’

‘memento mori,’ which means ‘Remember that you must die.’

But any display of magnificence presupposes a display of power. It has often been said that the political situation in the Baroque period was not unlike its art and architec

… he wanted to clear all the rubble off the site…

“You begin to work out your own philosophy.”

‘How can you be certain that your whole life is not a dream?’

Laboratory of The Mind

 Having gone through the book Robert Browns Laboratory of Mind – Thought Experiments in Natural
Sciences, I have taken the following notes. Though the book starts with examples from a varied disciplines it culminates trying to interpret the EPR paradox in a way. Though an interesting book to read for a philosopher of science. I would have liked to see some detailed discussions on some of the thought experiments, the book could have been more aptly titled  Thought Experiments in [Quantum]  Sciences, though there is an entire chapter on Einstein, who is the master of such thought experiments, equaled only by Galileo.

 Quotes

  As I was sitting in my chair
  I knew the bottom wasn’t there,
  Nor legs nor back, but I just sat,
  Ignoring little things like that.

  Logic alone cannot give us great wealth of mathematical results.

   since abstract objects if they did exist would be unknowable.

    just as no experiment in physics is really crucial, so no argument
    in philosophy is really conclusive. 73

    In reality the very opposite happens. It is the theory which
    decides what we can observe…’ 106

    the crucial difference between Einstein and those who make the
    correspondence with experimental fact the chief deciding factor
    for or against a theory: even though the ‘experimental facts’ at
    that time very clearly seemed to favor the theory of his opponents
    rather than his own, he finds the ad hoc character of their
    theories more significant and objectionable than an apparent
    disagreement between his theory and their ‘facts’. 120

    As Heisenberg put it, This probability function represents a
    mixture of two things, partly a fact and partly our knowledge of a
    fact’ (1958, 45). 128

    What is even meant by ‘an interpretation of the QM formalism’ is
    somewhat vague. Logicians have a precise notion of
    ‘interpretation’ or ‘model of a formal system’, but that won’t do
    here. To start with, the formalism is already partially
    interpreted; it is hooked to observational input and output in a
    clear and unambiguous way.  This partial interpretation is called
    the minimal statistical interpretation. What it can do is handle
    everything observable. It is often favoured by those who advocate
    an instrumentalist outlook for scientific theories in general. But
    our interest is with how the world really works, not just with
    making successful observable predictions. Only those lacking a
    soul are content with the minimal statistical interpretation. 131

    In many (perhaps all) scientific theories, there are elements
    which are taken as just brute facts. For instance, in Newton’s
    physics, inertia is an unexplained explainer; it accounts for
    other phenomena, but is itself unaccounted for. Are EPR
    correlations like that? 146

* Questions
1. When we see one swan to be white we do not conclude immediately
   that all swans are white. But on the other hand we conclude that
   all gold atoms have the same atomic number 79. Why is there an
   asymmetry between the two modes of thought?

2. Why does 3>2 seems intuitively pretty obvious, whereas `proton is heavier than
   electron’ does not?

3. Quine says, our conviction that 2+2=4 does not stem from laboratory
   observations, no matter how carefully performed or often
   repeated. Comment.

4. How would things be different if there were no abstract objects but
   everything else, including our ‘intuitions’, remained the same?

5. Is Newton’s first law only vacuously true? Let me elaborate on
   this. The first law as known states the following:

   /A body will continue its state motion or rest, unless it is acted
   upon by a force./
  
   Now how do we do this experiment in real? Can we have /any/ test
   body which is far away from any other body, so that there are /no/
   forces acting on the test body? If not, then how can we be assured
   about the validity of the first law?

6. Though we often now make fun of theories like phlogiston, caloric
   or aether, they were actually successful to some degree in their
   day and were believed by reasonable people. (Maxwell once said that
   the aether theory was the best confirmed in all science.) The
   physical world somehow or other contributed to the production of
   these rational, but false, beliefs. How is it that a (physical)
   world that contains no phlogiston, caloric, or aether can somehow
   be responsible for bringing about the phlogiston, caloric, and
   aether theories?

The 5 Φ’s of Life

Life as I see it, has five essential `F’s’. Many people may not agree to them, but then this is my blog, so I will tell, whether you like it or not. I will give my reasons for each one, why it is esential according to me. You may agree, or disagree, or give no opinion, it does not matter. Since this blog is more like a personal diary, which I will not link to anybody, I think it is safe to write things here, which I would not like to be in public.

[But then am I not contradicting myself, when I am putting my personal thoughts in a public place?]

So the five F’s

  • Phood: Food is essential for our survival, this represents a living organisms most basic needs. This is what distinguishes us from non-living matter. But the food just should not be for sustenance. It should also be enjoyed. What is the point in eating something that you don’t like? No I don’t mean that we get to eat everything that we like, [I am definitely not suggesting that if you don’t have breads then you should eat cakes], but with whatever we have to eat, we should be enjoying it. If you make the food [not like the plants] but in the more human sense of the world. When you “make” food you get joy of creating something wonderful, if you do not then I am sorry for you. Also the cook should have the complete freedom to do with the food .
  • Philosophy: This is what distinguishes us from the other living beings, we have to have a philosophy of our own, or at least one that is taken from others. But what is essentially needed is to critically look at the aspects of life.
  • Phuck: Well what to say about this? I guess you understand my feelings!
  • Physics: Physics according to some people is the pinnacle of our achievement. Since I am a physicist by training, I have included physics here. Physics has given me a skeptical attitude towards things in life. Though this is not the only path which will lead you here nor that everyone who is a physicist by training will go along this path, but this was my path, hence I list is here.
  • Photography: I have included photography for two reasons.[I am still an amateur [literally and figuratively], as I have not been paid for anything that I have done so far.] One is that photography enables you to store moments, that you have for an extended period of time, and that too in a form that you can share with other people. The other reason is about the art of photography itself. When you are behind a camera, you start to see things differently, from differently perspectives and angles. Is this what not a skeptic needs? Photography in a way provides me with practical tools of implementing many philosophical ideas which would otherwise remain abstract.

I’m not there

I’m not there…
or

I am everywhere?

Recently Samir had strongly recommended me to watch a movie called “I am Not There” and I did not get much time to watch it during the last month [He is so influenced that since he saw the movie, his away status message is “I’m Not There!”]. So finally I saw the movie. Well I did not know anything about the movie what it was about, or rather who it was about. The movie begins with short, seemingly totally disconnected shots, involving different actors and characters in different time scales and settings. This style is continued throughout the entire film. Seemingly the things are unrelated, and you get a feeling that you would probably get if you are watching six different TV channels one after the other. There seems to be no coherence, nothing which links these different stories, as not only the time frames but also the character are different. If this was made in bollywood, I guess all the roles would be played by Kamal Hassan, who has a fetish towards playing many roles in a single film. This I think saves him from trouble of showing his talents in different films as different characters, as he can show them off in just one production.

Anyway let me continue with I’m Not There. But then slowly a pattern emerges, even more subtly. What we are seeing here is just one person, who has different “phases” in life. All of us do, don’t we? We are never the same person, that we were yesterday, our experience does change us. This is the meaning of being a human according to me, if you are unable to change with experience then, what is the use of your cognitive apparatus, whether innate or otherwise? Just acting wise, I loved the kid played by Marcus Carl Franklin as “Woody Guthrie”, a version of the young Dylan. And Cate Blanchett was amazing, if fact I did not recognise her, till the titles came ;). She won the Golden Globe Award for her performance, in addition to several critics awards and was nominated for a Screen Actors Guild Award and an Academy Award. Photography was good and the music, music is the soul of the movie as it was of Bob Dylan’s life…

But the movie meant more to me than that…


Yes we do have phases in our life, at a certain age we would be very strongly influenced by some philosophy or persona, but this most of the times does not last forever. How many people now say “Michael Jackson is the King of Pop!” In our childhood we have heroes and fantasy characters which we have a liking for, but they fade away with our childhood and its memories. How many things from your childhood you can remember, which you consider now as stupid? This I think applies to the our so called adult phase also, in fact I think we are all just grown up children, don’t we grow up from children? We have different fads in our life and these fads represent our different phases of life. So this movie is really a longitudinal cross section of Bob Dylan’s life, as seen in different perspectives. One person can have different lives, as disconnected as shown in here. This is a longitudinal view of life, in which we can demarcate the different phases, as we can see them.


But I have another question to raise here. The question is similar to the poster above. In fact this poster iconifies the question. How many different lives you can live at the same moment? Don’t get it? I will put it in another way. How many different phases you are currently living in? I am not talking about the past phases or the future phases, but the current phases. The movies shows the phase changes over one’s life time, but what kind of phase chagnes we do in a matter of a week or day or hours? Another important distinction that I want to add is that the phases shown in the movies were linear, by which I mean you cannot go back to earlier phase from a later one. But in our own life we do, do that.

Let me explain, what I mean here. The question is what are you, now? I can distinctly identify many different “me’s” in a days work. I can be a physicist, an astronomer, a biker, a photographer, a naturalist, a cook, an artist, a designer, a bibliophile, an educationist, a teacher, a film critic, a shopper, a philosopher, an idiot, an art critic and fan, a gardener, a mathematician, a lover, a historian, a collector [of various sorts], a writer, a foodie, a rationalist….

ये जो वल्ड है ना वल्ड, ईसमें दो टाईप के लोग होते है. एक जो सारे जिंदगी एकही काम करते है, अौर दुसरे जो एक ही जिंदगी में सारे काम करते है.
ACP दशरथ सिंह, बंटी अौर बबली

All of these are part of my persona, when I look at them from without, I see them as different as they can be, they are many times totally disconnected, yet they form me, they are the part of my own persona. All these different personalities are somehow integrated to form the whole of me. Though each one of them is most of the times distinct, yet the are related. The relation is through me. Many times I feel as if all these different people are living their lives through me, I am only the medium, and have no life of my own. Or is it that I have multiple lives, and living all of them at the same time? How come these different persona’s came to my life? Why I have only these not others? Does this happen with everybody?

How does one interpret all this, in the larger context of life?

Now that I have raised these questions let me tell you my answer to this. You will interpret all of this differently than I have, and I don’t expect you to agree with my PoV here. I guess the next step is to integrate all of these, and have a broader picture of life. That is what you see as a physicist should be intelligible to the other you, who is not a physicist. This is one way of looking at it, but why should we mix them. It is not at all necessary to mix things, people can and do have disconnected lives, don’t they? What commonality do two people working in entirely different conditions have? Is it imperative that they get each others world views?

What do you say?

How many different “you” you can identify in yourself?

What is education?

What do we mean by education?

The word ‘education’ can be derived from one of two latin words or from both. These words are educere, which means ‘to lead out’ or ‘to train’ and educare which means to ‘to train’ or ‘to nourish’. But this etymology does not give us a understanding behind the term itself.
Colloquially it can mean the sort of training that goes in schools, colleges and universities.
We see some meanings by different people who were related to education and philosophy of it.
Mahatma Gandhi
Education is “an all round drawing out of the best in child and man – body, mind, and spirit.”
John Dewey
Education is regarded as the development of “all those capacities in the individual, which will enable him to control his environment and fullfill his possibilities.”
We see that the term education refers to two things: they point to education as the process of development of the individual form infancy to maturity a lifelong process.
J. S. Mill explains it thus:
“Not only does it include whatever we do for ourselves, and whatever is done for us by others for the express purpose of bringing us somewhat nearer to the perfection of our nature; it does more; in its last connotation it comprehends even the indirect effects of things of which the direct purposes are quite different, by laws, by forms of government, by the industrial arts, by modes of social life; nay, even by physical fact, not dependent on human will, by climate, soil and local position. Whatever helps to shape human being, to make the individual what he is, or hinder him form what he is not… is a part of his education.”
This is the wider meaning of the term ‘education’, for the narrower meaning Mill says
“the culture which each generation purposely gives to those who are to be its successors, in order to qualify them for at least keeping up, and if possible for raising the level of improvement which has been attained.”
Now we look at what are the Indian views on education. The Rig Veda [ऋग वेद] regards education as a force which makes the individual self-reliant as well as selfless. The Upanishads [ऊपनिषद] regard the result of education as being more important than its nature, the end-product of education is salvation [निर्वाण].
Panini [पाणिनी] identified as the training one obtains from nature.
Kanada [कानद] considers to be a mean of self-contentment.
Yajanvalaka [याजनवालक] regarded education as a means to the development of character and usefulness in the individual.
While Vivekanand perceived education as the manifestation of divine perfection already existing in man.

“Education should aim at man-making”

By man making it is meant formation of character, increase in power of mind, and expansion of the intellectual capacities.

While Tagore says that education should help the individual child realize in and through education, the essential unit of man and his relationship with the universe – an education for fullness.
The Indian Education Commission of 1966 says:

“Education, according to Indian tradition is not merely a means to earn a living; nor is it only a nursery of thought or a school for citizenship. It is initiation into the life of spirit, a training of human souls in pursuit of truth and practice of virtue. It is a second birth द्वियाम ज्ञानम – education for liberation.”

Past this we now have a look at some Western views on the same.

Plato thought that education should enable one to attain the highest good or God, through pursuit of inherent spiritual values of truth, beauty and goodness.
Aristotle held that education exists exclusively to develop man’s intellect in a world of reality which men can know and understand.
St. Thomas Aquinas considered education to be process of discerning the truth about things as they really are, and to extend and integrate such truth as it is known.
More recently behaviorists consider education as a process of conditioning, of providing stimuli, repetition, rewards and reinforcements. ‘
The social scientists define education as the transmission of cultural heritage – which consists of learned behavior, and includes tangible objects such as tools, clothing, etc. as well as intangible objects such as language, beliefs etc.

“Education is the transmission of knowledge, value and skills of a culture.”

The meaning of the term ‘education’ can be summarily expressed as:
  • A set of techniques for imparting knowledge, skills and attitudes.
  • A set of theories which purport to explain or justify the use of these techniques.
  • A set of values or ideals embodied and expressed in the purposes for which knowledge, skills and attitudes are imparted and so directing the amounts and types of training that is given.
The educational system of any society is a more or less elaborate social mechanism designed to bring about in the persons submitted to it certain skills and attitudes that are judged to be useful and desirable in the society. The gist of all the educational system can be reduced in two questions:
  1. What is held valuable as an end?
  2. What means will effectively realize these ends?
For ordinary day to day working of the society itself makes it necessary for its members to have certain minimum skills and attitudes in common, and imparting these skills is one of the ends of education. This minimum will be different for different societies.
So we see that in the meaning of what education is, is determined by what are the aims of education. Every educational system must have an aim, for having an aim will provide it with a direction, and make the process more meaningful. One of the objectives of education from what we have seen in the definitions above has a connection to the meaning of life, which in turn is connected to philosophy of the person at that time. Thus the aims of education are dependent on the philosophy which is prevalent in society at that time. The aims of any educational system tell us what it is for. The aims determine the entire character of the educational process: curriculum, pedagogy and assessment. Just because the aims are not explicitly stated it does not mean that they are absent. They can be both implicit and explicit, and can be embodied in the everyday practices of teachers and students, as well as in the government documents. The printing of aims of education in a document is neither necessary nor sufficient for education to have aims, since documents can be ignored.
Education can have more than one aim, so long as the aims are not mutually incompatible. It is not possible for example to aim to produce citizens who will obey the state unquestioningly and at the same time produce people who will question any proposal that they encounter. Many aims are broadly compatible but there exists certain tension. Partly, it is because some aims can be fully achieved at the expense of others. A society has to agree on the priority of the aims, which it wants its future citizens to have.
A listing of general educational aims is as follows:
  1. To provide people with a minimum of the skills necessary for them [a] to take their place in the society and [b] to seek further knowledge.
  2. To provide them with a vocational training that will enable them to be self-supporting.
  3. To awaken an interest in and a taste for knowledge.
  4. To make them critical.
  5. To put them in touch with and train them to appreciate cultural and moral achievements of mankind.
But are these the normative aims of education or the descriptive ones?
Following Peters [Ethics and Education 1966], the differences between education and other human pursuits are given in three different criterion.
  1. ‘Education’ in its fullest sense, has necessary implication that something valuable or worthwhile is going on. Education is not valuable as a means to a valuable end such as a good job, but rather because it involves those being educated being initiated into activities which are worthwhile themselves, that is, are intrinsically valuable. This is contrasted with training, which carries with it the ideas of limited application and an external goal, that is, one is trained for something for some external purpose, with ‘education’ which implies neither of these things
  2. ‘Education’ involves the acquisition of a body of knowledge and understanding which surpasses mere skill, know-how or the collection of information. Such knowledge and understanding must involve the principles which underlie skills, procedural knowledge and information, and must transform life of the person being educated both in terms of the general outlook and in becoming committed to the standards inherent in the areas of education. To this body of knowledge and understanding must be added ‘cognitive perspective’ whereby the development of any specialism, for example in science, is seen in the context of the place of this specialism in a coherent life pattern.
  3. The process of education must involve at least some understanding of what is being learnt and what is required in learning, so we could not be ‘brain washed’ or ‘conditioned’ in to education.
Well this is really an incoherent attempt to list out things that I have read about education? So far all the philosophers that I have read appear to give a normative meaning of education i.e. to say they tell us “What education ought to be…” Thus they give us what according to their philosophical outlook is the ‘normal’ version of education. But what I am interested in is the descriptive version; “How actually things are…” The more I look and think about the current educational system the more I think it has deviated from the aims of these great thinkers. Thus the descriptive version will tell us how much this deviation is, and also whether it is for good?

The Demarcation Problem

What is the demarcation problem?
I want to discuss an acute problem which philosophers of science have to face. The question it self is quite simple. You don’t have to be genius to understand the question, but the answer to this question is far from simple.
The question put simply would read something like this:
What is the difference between science and non-science?
Or
What is science?
If you ask this question perhaps to a school going kid, you will probably get a good and clear cut answer, Physics, Chemistry and Biology are sciences, [also perhaps mathematics also?]. Also the
perhaps this is the view not only school going kids but their teachers also feel and so do practicing scientists.
Most of the lay people are afraid of science and scientists. The very idea of science is mystical and scientists are seen as the worshippers of the nature itself. This is the common image which is also portrayed in the media, [so it is popular or it is the other way round?]. In the movies scientists are [if they are not the protagonists] shown as causing almost the end of the world, or having no hearts but for the subject of their study. This is the label of evil genius which has been put on them. The list of examples would be endless. But to give a few of my own favorite ones are as under:
Uma Thurman as Poison Ivy in Batman and Robin

And Mike Myers as Dr. Evil in the Austin Powers series

This can be easily seen that the public opinion about science is not what can be called good. Another thing to add here, if we in general see that there is an attribute scientific to any thing then the thing is has to be rational, logical and something that can be relied upon. Take for example the warning which every cigarette smoker reads but ignores, this warning is supposed to be `scientific’ so that you have to take it seriously, no bullshit here, this is what scientists say. This is The Truth, with a capital T. All these concepts are what I call the traditional concepts in Philosophy of Science [PoS hereafter], have a root in the beginning of the 20th century.
What is the point of bringing all this up in an philosophical discussion? Wait, what we will see is the fact that the things just mentioned have a very deep root in philosophy. What we want to do is to explicate this root.
We start our discussion with the so called modern era of the philosophy, which was mostly in the last century. In this era a group of philosophers known as the Vienna Circle presented the first dominant view point, which persisted till the first half of the century.
But this will be in another post….


Why is this world so?

Why is the world the way it is? This question has been raised by most of the philosophers from time immemorial.
But I am not concerned with the worldly affairs on the largest scale. When I talk about this subject I am more concerned about the problems at hand, about the world which I experience, not the complete world which is `out there.’

What I want to know is that whether I had any influence on the kind of world that I am in right now. Was it the destiny that brought me here? Or is it that some decisions that I made [consciously or not] which have landed me in the world that I am in now.

As Neo says to Morpheus that he is not comfortable with the idea that he is not in control of his own life scares him. But that is the precise thing that I want to ask. Are we ever in control of our life or it is predetermined, whatever decisions that you take.

I know that this position cannot be falsified that is it cannot be tested, because whatever you do, it will claim that it was predetermined. It takes care of everything. Even our arguing about this way of thinking will be predetermined according to this world view.

So how do we come out of this. One way is to reject this position completely stating that nothing is pre-determined, we are what we do, or “we are what we eat.”