We had previously talked about problem with contexts given in mathematics problems. This is not new, Thorndike in 1926 made similar observations.

Unreal and Useless Problems

In a previous chapter it was shown that about half of the verbal problems given in standard courses were not genuine, since in real life the answer would not be needed. Obviously we should not, except for reasons of weight, thus connect algebraic work with futility. Similarly we should not teach the pupil to solve by algebra problems which in reality are better solved otherwise, for example, by actual counting or measuring. Similarly we should not set him to solve problems which are silly or trivial, connecting algebra in his mind with pettiness and folly, unless there is some clear, counterbalancing gain.

This may seem beside the point to some teachers, ”A problem is just a problem to the children,” they will say,

“The children don’t know or care whether it is about men or fairies, ball games or consecutive numbers.” This may be largely true in some classes, but it strengthens our criticism. For, if pupils^do not know what the problem is about, they are forming the extremely bad habit of solving problems by considering only the numbers, conjunctions, etc., regardless of the situation described. If they do not care what it is about, it is probably because the problems encountered have not on the average been worth caring about save as corpora vilia for practice in thinking.

Another objection to our criticism may be that great mathematicians have been interested in problems which are admittedly silly or trivial. So Bhaskara addresses a young woman as follows: ”The square root of half the number of a swarm of bees is gone to a shrub of jasmine; and so are eight-ninths of the swarm: a female is buzzing to one remaining male that is humming within a lotus, in which he is confined, having been allured to it by its fragrance at night. Say, lovely woman, the number of bees.” Euclid is the reputed author of: ”A mule and a donkey were going to market laden with wheat. The mule said,’If you gave me one measure I should carry twice as much as you, but if I gave you one we should bear equal burdens.’ Tell me, learned geometrician, what were their burdens.” Diophantus is said to have included in his preparations for death the composition of this for his epitaph : ” Diophantus passed one-sixth of his life in childhood one-twelfth in youth, and one-seventh more as a bachelor. Five years after his marriage was born a son, who died four years before his father at half his father’s age.”

My answer to this is that pupils of great mathematical interest and ability to whom the mathematical aspects of these problems outweigh all else about them will also be interested in such problems, but the rank and file of pupils will react primarily to the silliness and triviality. If all they experience of algebra is that it solves such problems they will think it a folly; if all they know of Euclid or Diophantus is that he put such problems, they will think him a fool. Such enjoyment of these problems as they do have is indeed compounded in part of a feeling of superiority.

– From Thorndike et al. *The Psychology of Algebra * 1926

# psychology

# Can general laws of physics explain everything?

Many scientists look on chemistry and physics as ideal models of what psychology should be like. After all, the atoms in the brain are subject to the same all – inclusive physical laws that govern every other form of matter. Then can we also explain what our brains actually do entirely in terms of those same basic principles? The answer is no, simply because even if we understood how each of our billions of brain cells work separately, this would not tell us how the brain works as an agency. The “laws of thought” depend not only upon the properties of those brain cells,but also on how they are connected. And these connections are established not by the basic, “general” laws of physics, but by the particular arrangements of the millions of bits of information in our inherited genes. To be sure, “general” laws apply to everything. But, for that very reason, they can rarely explain anything in particular.

– Marvin Minsky inThe Society of Mind pp. 26