The Astronomers

Looking at this vast natural drama from their observation posts on the minute planet Earth as it revolves around the insignificant star called the sun, a handful of astronomers seek to gain an understanding of the cosmos. Using instruments constructed from materials found on their planet, they follow the activities in space from their observatories and launch rocket-borne telescopes from Earth. Some people confuse them with astrologers, but astronomers reject all such notions of kinship; others look up to them because their thoughts and ideas move in realms beyond the imagination of those of us engaged in everyday activities. Their work brings them a step closer to creation, at least to the creation of the uninhabited world, but they are sober scientists who do not attempt to adduce ethical norms from the phenomena they observe. Their involvement with cosmic matters does not make them better human beings. They are not motivated solely by a dedication to greater knowledge. As is true of other segments of human society, thoughts of competition and career advancement enter into their calculations; quite a few discoveries grew out of just such considerations. Yet this is not to deny, as we shall learn, that we find among them a passion for knowledge and much friendly cooperation. The fruit of their research is the work of human beings and as such is often imperfect, even erroneous. But despite setbacks the course of the science of astronomy, beginning with the Babylonians and culminating in modern astrophysics, has led ever forward.

Rudolph Kippenhahn, 100 Billion Suns p. 6-7

Asimov on science literacy

Science literacy does not have a unique definition. Depending on what your ideas about science are, the meaning of science literacy will change. But being scientifically literate, is usually taken as a sign of being informed, being rational in decisions. Here is what the great science and science-fiction writer Issac Asimov had to say about its importance.

A public that does not understand how science works can, all too easily, fall prey to those ignoramuses … who make fun of what they do not understand, or
to the sloganeers who proclaim scientists to be the mercenary warriors of today, and the tools of the military. The difference … between … understanding and not understanding . . . is also the difference between respect and admiration on the one side, and hate and fear on the other.

– Isaac Asimov

 

Thomas Kuhn on the role of textbooks in science education

The single most striking feature of this [science] education is that, to an extent wholly unknown in other fields, it is conducted entirely through textbooks. Typically, undergraduate and graduate students of chemistry, physics, astronomy, geology, or biology acquire the substance of their fields from books written especially for students.

Thomas Kuhn The Essential Tension

Here Kuhn is trying to show us the nature of science education which is usually divergent from the historical processes and events which led to the currently accepted theories. Most of the textbooks rather show the content matter which makes sense conceptually in a rationally organised manner. Of course, the ideal goal, at least in the physical sciences, is to create a hypothetico-deductive model in which a given theory, its predictions, explanations and implications can be derived from some basic definitions and axioms. For example, an introductory text on motion in physics usually starts with definitions and assumptions usually of a mass point, and/or operations that are defined on it. The text does not describe the historical conditions in which this conceptual approach arose, rather it adapts a very pragmatic pedagogical approach. It defines the term and ends it there, but in this process, it redefines the conceptual history. This approach assumes that there is no pedagogical merit or role in introducing a concept in its historical context. This perhaps is also linked to Poppers distinction of the context of discovery and the context of justification. What we see is a rational reconstruction of historical processes to make sense of them in a straightforward manner.

 

 

Science Education and Textbooks

What are the worst possible ways of approaching the textbooks for teaching science? In his book Science Teaching: The Role of History and Philosophy of Science pedagogue Michael Matthews quotes (p. 51) Kenealy in this matter. Many of the textbooks of science would fall in this categorisation. The emphasis lays squarely on the content part, and that too memorized testing of it.

Kenealy characterizes the worst science texts as ones which “attempt to spraypaint their readers with an enormous amount of ‘scientific facts,’ and then test the readers’ memory recall.” He goes on to observe that:

Reading such a book is much like confronting a psychology experiment which is testing recall of a random list of nonsense words. In fact, the experience is often worse than that, because the book is a presentation that purports to make sense, but is missing so many key elements needed to understand how human beings could ever reason to such bizarre things, that the reader often blames herself or himself and feels “stupid,” and that science is only for special people who can think “that way” … such books and courses have lost a sense of coherence, a sense of plot, a sense of building to a climax, a sense of resolution. (Kenealy 1989, p. 215)

What kind of pedagogical imagination and theories will lead to the textbooks which have a complete emphasis on the “facts of science”? This pedagogical imagination also intimately linked to the kind of assessments that we will be using to test the “learning”. Now if we are satisfied by assessing our children by their ability to recall definitions and facts and derivations and being able to reproduce them in writing (handwriting) in a limited time then this is the kind of syllabus that we will end up with. Is it a wonder if students are found to be full of misconceptions or don’t even have basic ideas about science, its nature and methods being correct? What is surprising, at least for me, that even in such a situation learning still happens! Students still get some ideas right if not all.

A curriculum which does not see a point in assessing concepts has no right to lament at students not being able to understand them or lacking conceptual understanding. As Position Paper on Teaching of Science in NCF 2005 remarks

‘What is not assessed at the Board examination is never taught’

So, if the assessment is not at a conceptual level why should the students ever spend their time on understanding concepts? What good will it bring them in a system where a single mark can decide your future?

 

Why did not scientific revolution occur in India?

If one wonders why did not the scientific revolution happen in India some aspects of how knowledge was limited might have an implication. I present here a comparative study of conditions prevailing in the two societies, and how the presence of the printing press disrupted the traditional balance of knowledge and its sharing in the society. Unfortunately, in India, we have no counterpart to this event which could have lead to the spread of knowledge amongst the masses. Even if it were, the rigid caste system would have made it almost impossible for knowledge to be so freely transferred. In an era of a global village, we still feel strong repercussions of caste-based discrimination today.

Consider this about how knowledge was restricted to apprenticeship and was often lost in transition amongst the traditional Indian craftsmen.

The secret of perfection in art and crafts resided in individuals 
and was never widely publicized. Master-craftsmen trained their 
apprentices from a very tender age but they did not teach them the 
more subtle aspects of their craft. Neither did they write books 
revealing the secrets of their perfection. These points were revealed 
by the master-craftsman only towards the end of his life and only to 
a favoured apprentice. Their secrets often died with them. p. 211 
(Rizvi - Wonder that Was India Part 2)

This was compounded by the fact that the profession that one could practice was decided by the caste one was born in. In addition to this, the mostly oral nature of the Hindu theology in Sanskrit and exclusive rights to Brahmins as custodians of this knowledge played a huge role in stifling any societal or scientific progress. The extant books (both theological and scientific, mathematical) were mostly in Sanskrit, which again restricted their readership. And as they were reproduced by hand the copies and access to them was limited. The mobility between castes was strictly forbidden. Thus we have both theological as well as scientific, mathematical and technological knowledge bound by tradition which was not available to the general public by its design. Any leakage of such a knowledge to people who were not intended to know it was met with severe punishments.

In contrast to this, consider the situation in Europe. The church did have an control over the knowledge that was taught in the universities. The Bible was in Latin, which can be seen as European counterpart of Sanskrit in terms of its functions and reach, and the Church held authority over its interpretation and usage. The impact of movable type on the spread of the Bible is well known. The translation of the Bible to publicly spoken languages and its subsequent spread to the general public is seen as a major event in the renaissance and subsequently that of the scientific revolution. This was only possible due to the struggle between Catholics and Protestants, again this did not have any counterpart in the Indian context. But as with any subversive technology the printing press did not only print the Bible. Soon, it was put to use to create materials for all types of readership.

First appearing around 1450 in the German city of Mainz, printing 
rapidly spread from Johann Gutenberg's original press throughout 
the German territories and northern Italy, most notably Venice. 
This establishment, during the second half of the century, of 
scores of print shops corresponds to two related features of 
European, especially Western European, society at that time.
The first is the fairly high rate of literacy on which the market 
for books and pamphlets was based. The second is the quite sudden 
wide availability of a multitude oE philosophical and general 
intellectual options. Together, these two features created a 
situation in which knowledge for very many people was no longer 
so chained to the texts of the university curriculum. This was a 
new situation practically without parallel. p. 24
(Dear - Revolutionizing the Sciences)

This spread led to the creation of books in areas of knowledge where it was guarded or passed through apprenticeship.

In 1531 and 1532 there first appeared a  group of small booklets, 
known as Kunstbüchlein ("Iittle craft-books"), on a variety of 
practical craft and technical subjects. These anonymous books were 
produced from the shops of printers in a number of German cities, 
and catered to what they revealed as an eager appetite for such 
things not just among German craftsmen, but among literate people of 
the middling sort in general. They broke the perceived monopoly of 
the craft guilds over possession of such practical knowledge as made 
up metallurgy, dyeing or other chemical recipes, pottery or any of 
a multitude of potential household requisites. p. 26
(Dear - Revolutionizing the Sciences) 

Though, as Dear rightly points in the next paragraph just having access to information of paper about a craft does not necessarily lead to practice as experts, it nonetheless helped to overcome a belief about the fact that knowledge indeed can be transferred in the form of books via the printing press.

In the coming century, the presence of the printing press helped the spread of knowledge to all parts of Europe in all subjects of inquiry. There is no parallel to this in the Indian context. Neither the technology (in the form of a printing press) nor the drive to spread the knowledge to the general masses was present in India. In this post, I have glossed over many details but I believe there were two main reasons for a scientific revolution to not happen in India are, first the connection of caste with profession and non-availability of a technology to spread knowledge to the general public. As a result, though earlier we had a better technology and scientific knowledge we did not have a Scientific Revolution. In the current era, with the connected devices, and also with caste not being a barrier to one’s profession, who knows we might be on the doorsteps of a revolution.

 

Implicit cognition in the visual mode

Images become iconified, with the image representing an object or
phenomena, but this happens by enculturation rather by training. An
example to elaborate this notion is the painting Treachery of
Images by Belgian surrealist artist René Magritte. The painting is
also sometimes called This is not a pipe. The picture shows a
pipe, and below it, Magritte painted, “Ceci n’est pas une pipe.”,
French for “This is not a pipe.”

176

When one looks at the painting, one
exclaims “Of course, it is a pipe! What is the painter trying to say
here? We can all see that it is indeed a pipe, only a fool will claim
otherwise!” But then this is what Magritte has to say:

The famous pipe. How people reproached me for it! And yet, could you
stuff my pipe? No, it’s just a representation, is it not? So if I had
written on my picture `This is a pipe’, I’d have been lying!

Aha! Yess! Of course!! you say. “Of course it is not a pipe! Of
course it is a representation of the pipe. We all know that! Is this
all the painter was trying to say? Its a sort of let down, we were
expecting more abstract thing from the surrealist.” We see that the
idea or concept that the painting is a \emph{representation} is so
deeply embedded in our mental conceptual construct that we take it for
granted all the time. It has become so basic to our everyday social
discourse and intercourse that by default we assume it to be so. Hence
the confusion about the image of the pipe. Magritte exposes this
simple assumption, that we so often ignore. This is true for all the
graphics that we see around us. The assumption is implicit in all the
things we experience in the society. The representation becomes the
thing itself, for it is implicit in the way we talk and communicate.

Big B and D

When you look at a photo of something or someone, you recognize
it. “This is Big B!” you say looking at the painting! But then you
have already implicitly assumed that the representation of Big B is Big B. This implicit assumption comes from years of implicit training from being submerged in  the sea of the visual artefacts that surround and drown us. This association between the visual representation and the reality it represents had become the central theme of the visual culture that we live in. The training that we need for such an association comes from the peers and mentors that surround us from the childhood. The meaning and the association of the images is taught/caught over the years, so much so that we assume the abstract association is the normal way things are. In this way it becomes the implicit truth, though when one is pressed, the explicit connections are brought out.

Yet when it comes to understanding images in science and mathematics, the same thing doesn’t happen. There is no enculturation of children into understand the implicit meaning in these images. Hardly there are no peers or mentors whose actions and practices can be imitated by the young impressible learners. The practice which comes so naturally in other domains (identifying actor with a picture of the actor, or identifying a physical space with a photo) doesn’t happen in science and mathematics classrooms. The notion of practice is dissociated from the what is done to imbibe this understanding in the children. A practice based approach where the images become synonymous with their implied meaning is used in vocabulary might one very positive way out, this is after all practitioners of science and mathematics learn their trade.

Politics Science Education or Science Education Politics or Science Politics Education

I am rather not sure what should be the exact title of this
post. Apart from the two options above it could have been any other
combination of these three words. Because I would be talking about all
three of them in interdependent manner.

If someone tells you that education is or should be independent of politics they, I would say they are very naive in their view about society. Education in general and formalised education in particular, which is supported and implemented by state is about political ideology that we want our next generation to have. One of the Marxian critique of state formalised education is that it keeps the current hierarchical structures untouched in its approach and thus sustains them. Now when we come to science education we get a bit more involved about ideas.

Science by itself was at one point of time assumed to be value-neutral. This line of though can be seen in the essays that some of us wrote in the schools with titles like “Science: good or bad”. Typically the line of argument in such is that by itself science is neither good or bad, but how we put it to use is what determines whether it is good or bad. Examples to substantiate the arguments typically involve some horrific incidents like the atomic bomb on one hand and life saving drugs on the other hand. But by itself, science is not about good or bad values. It is assumed to be neutral in that sense (there are other notions of value-neutrality of science which we will consider later). Scientific thought and its products are considered above petty issues of society and indiduals, it seemed to be an quest for eternal truth. No one questioned the processes or products of science which were assumed to be the most noble, rational, logical and superior way of doing things. But this pretty picture about scientific enterprise was broken by Thomas Kuhn. What we were looking at so far is the “normative” idea of science. That is we create some ideals about science and work under the assumption that this is how actual science is or ought to be. What Kuhn in his seminal work titled The Structure of Scientific Revolution was to challenge such a normative view, instead he did a historical analysis of how science is actually done ans gave us a “descriptive” picture about science, which was based on historical facts. Keeping up the name of the book, it actually revolutionised the way we look at science.

Now keeping in mind this disctinction between “normative” and “descriptive” views is very important. This is not only true for science but also for all other forms of human endeavours. People often tend to confuse or combine the two or many times are not even aware of the difference.

After Kuhn’s groundbreaking work entire new view about science its processes and products emerged. Various aspects of the scientific enterprise which were initially thought about outside purview of science or not affecting science came in to spotlight. Science was dissected and deconstructed from various points of view. Over the next few decades these ideas emerged into full fledged disciplies on their own. Some very valid criticisms of the scientific enterprise were developed and agreed upon. For example, the idea that there exists “the scientific method” was serisously looked into and was found to be too naive. A modified view was adopted in this regard and most of philosophers of science agreed that this is too restrictive a view. Added to this the post-modernist views about science may seem strange and bizzare at times to the uninitiated. This led to what many call as the “science-wars” between scientific realists and postmodernists. The scientific realists who believe that the world described by science is the real world as it is, independent of what it might be. So in this view it implies that there is objective truth in science and the world it describes is real. This view also implies that there is something like “scientific method” and it role in creating true knowledge about the world is paramount. On the other hand postmodernist critics don’t necessarily agree with this view of the world. For example they question the very idea of objectivity of the scientific world-view. Deriving their own meaning into writings of Kuhn (which he didn’t agree to) they claimed that science itself is a social construct and has nothing to do with the real world. The apparent supremacy of “scientific-method” in creating knowledge or presenting us about the world-views is questioned. The entire scientific enterprise from processes to products was deciphered from dimensions of gender, sexual orientation, race and class. Now, when you are teaching about science to learners there should be an awareness about these issues. Some of the issues are usually overlooked or have a logical positivist nature in them. Many philosophers lament that though considerable change has happened in ideas regarding scientific enterprise especially in philosophy of science, it seems corresponding ideas in science education are not up to date. And this can be seen when you look at the science textbook with a critical focus.

With this background I will go into the reasons that made me write this post and the peculiar multi-title. It seems for post-modernists and some others that learning about politics of science is more important than learning science itself. And they feel this is the neutral view and there is nothing political about it. They look at science as an hierarchical enterprise where gender, class and race play the decisive role, hence everyone should know about it. I am not against sharing the fact with learners of science that there are other world-views, what I am against is to share only a peculiar world view which is shaped completely by one’s ideology and politcal stance rather than by actual contents. Many of the people don’t actually know science, yet they feel that they are fully justified to criticise it. And most of these people would fall on the left side of the political spectrum (at least that is what their self-image is). But the way I see it is that these same people are no different from the right-wingers who burn books without reading them. The pomos may think of themselves as intellectually superior to the tilak-sporting people but they are not. Such is the state of intellectuals that they feel threatened by exclusion of certain articles or inclusion of certain other ones in reading courses. They then use all their might to restore the “balance”. At the same time they also tell us only they have some esoteric knowledge about these issues which people like me cannot have. And no matter what I do I will never be able to do what they can. Perhaps they have super powers which I don’t know about, perhaps in their subjective world view the pigs can fly and this fact can be proven by using other methods than the scientific ones. Last point I want to make in this is inspite of all the criticims of science and its products it doesn’t stop these people from refraining use of these products and technologies! This is hypocrisy, they will curse the phone or the computer if it doesn’t work, what they perhaps don’t realise is that it might be working just that the pomos are not able to see it in their worldview.

Knowledge: Technical and Scientific

Utility had been deliberately excluded from Aristotelian natural philosophy. Aristotle had nothing against practical knowledge, which he called techne; he simply did not consider it to be the same kind of thing as scientific knowledge, which he called episteme. From techne we have the word technology, which means to us largely the application of scientific knowledge, while from episteme we have the word epistemology, a branch of philosophy that deals with the theory of knowledge, scientific or any other. For Aristotle, however, the difference between techne and episteme was not a difference between application and theory, but was one of sources of knowledge and goals of knowledge. The source of technical knowledge was practical experience and its goal was, roughly speaking, knowing what to do next time. The source of scientific knowledge was reason, and its goal was the  understanding of things through their causes.

–  Stillman Drake, Galileo A Very Short Introduction (p. 4)