Implicit cognition in the visual mode

Images become iconified, with the image representing an object or
phenomena, but this happens by enculturation rather by training. An
example to elaborate this notion is the painting Treachery of
Images by Belgian surrealist artist René Magritte. The painting is
also sometimes called This is not a pipe. The picture shows a
pipe, and below it, Magritte painted, “Ceci n’est pas une pipe.”,
French for “This is not a pipe.”

176

When one looks at the painting, one
exclaims “Of course, it is a pipe! What is the painter trying to say
here? We can all see that it is indeed a pipe, only a fool will claim
otherwise!” But then this is what Magritte has to say:

The famous pipe. How people reproached me for it! And yet, could you
stuff my pipe? No, it’s just a representation, is it not? So if I had
written on my picture `This is a pipe’, I’d have been lying!

Aha! Yess! Of course!! you say. “Of course it is not a pipe! Of
course it is a representation of the pipe. We all know that! Is this
all the painter was trying to say? Its a sort of let down, we were
expecting more abstract thing from the surrealist.” We see that the
idea or concept that the painting is a \emph{representation} is so
deeply embedded in our mental conceptual construct that we take it for
granted all the time. It has become so basic to our everyday social
discourse and intercourse that by default we assume it to be so. Hence
the confusion about the image of the pipe. Magritte exposes this
simple assumption, that we so often ignore. This is true for all the
graphics that we see around us. The assumption is implicit in all the
things we experience in the society. The representation becomes the
thing itself, for it is implicit in the way we talk and communicate.

Big B and D

When you look at a photo of something or someone, you recognize
it. “This is Big B!” you say looking at the painting! But then you
have already implicitly assumed that the representation of Big B is Big B. This implicit assumption comes from years of implicit training from being submerged in  the sea of the visual artefacts that surround and drown us. This association between the visual representation and the reality it represents had become the central theme of the visual culture that we live in. The training that we need for such an association comes from the peers and mentors that surround us from the childhood. The meaning and the association of the images is taught/caught over the years, so much so that we assume the abstract association is the normal way things are. In this way it becomes the implicit truth, though when one is pressed, the explicit connections are brought out.

Yet when it comes to understanding images in science and mathematics, the same thing doesn’t happen. There is no enculturation of children into understand the implicit meaning in these images. Hardly there are no peers or mentors whose actions and practices can be imitated by the young impressible learners. The practice which comes so naturally in other domains (identifying actor with a picture of the actor, or identifying a physical space with a photo) doesn’t happen in science and mathematics classrooms. The notion of practice is dissociated from the what is done to imbibe this understanding in the children. A practice based approach where the images become synonymous with their implied meaning is used in vocabulary might one very positive way out, this is after all practitioners of science and mathematics learn their trade.

Millions of Computers for Millions of Children

Yesterday ( it should be now read “a couple of years back”)while giving a talk, I was asked this rhetorical question (not verbatim, but close):

“What did you say was the sample size of your study?”

“Two. This was a case study.”

“So, considering that the activity that you have designed requires a computer and expeyes (a hardware for collecting data). How can you scale it up to schools which have millions of children?”

It seems that the person who was asking the question, for lack of any other question asked this. In seminars and academic institutes, there are always people like this, who will ask the question for sake of it. Just to make their presence felt. Anyways, it was good for me. I was expecting that this question would be asked. And I was very happy that it was asked.

The short answer that I gave was:

“You give a million computers to a million children!”

one-computer-per-child

Some people thought, this was a rhetoric answer to a rhetoric question, which incidentally was also humorous, as it also generated a lot of laughter, but this was not the case. In this post, I would like to elaborate on the short answer that I gave.

Of course, most of these ideas have come from reading and hearing Seymour Papert (who has recently demised, the article was started before that, but due to my lethargy never seen completion). The memes have been transferred, and now I am trying to make sense and adapt them to my own experience. And I would like to assert again that reading Papert has been an immensely rewarding and enriching experience for me. His are perhaps few books which I do not mind reading again and again. I like his writing style of giving parables to explain points in his arguments because the points he wants to make do not need a backbone of statistics to survive. Here also I will give a hypothetical example (derived from Papert) to explain what I meant.

The technological tools that children are using now mainly in the traditional school system are the pencil and the book. In this case, almost all educationalists would agree that every child would require to have one pencil to write and book for study. Even then there are some children who do use computers, some because their parents have them, some because the school has them, some have both. Now we consider a time 50 years back. Computers were almost non-existent, as we know them now. Computers were one of the most complicated and expensive technological artefacts that humans produced. But the enormous amount of money and efforts were put in the miniaturization of computers. So finally now we have computers that have become devices that we now know. In the last 50 years, the computer technology has grown exponentially, while the prices for the memory and computing power that one gets are falling, their usage.

Consider a classroom of 50 years back. Though there were computers they were something to be wondered about, something like very very expensive toys. The computers were not mature enough that children could handle them. In the classroom, the only available technological artefacts were used. The technology in the classroom was the pencil
and the printed book and a notebook to write with the pencil and of course, there was the blackboard.

Wait, you might be thinking we are in a digital age technology by default means computers, be it in your smart-phone, laptop or a desktop or at least a projector for god’s sake. But here I would like you to think about somethings which are very deeply embedded in our cultural psyche. The very fact that many things which we take for granted are
all technologies. For example, the writing instruments that you have to be it a pencil or a chalk are all technologies. But most of us don’t think of them as such because they are so common and most of us have had our experience with them. The mystery is lost. As the Arthur C. Clarke once said about technology and magic as his Third Law:

Any sufficiently advanced technology is indistinguishable from magic.

So deeply embedded this image is that we define it as the normal for our learners to be able to use this technology. Rather the entire edifice of our educational system rests on it. For example, your educational achievement is more or less based on the fact how much you can “write” in a limited time, from memory. And this we call assessment, examination and the like. Also the written text, from the time of Gutenberg, has more
or less complete hold over our intellectual activities. The text formed the basis of our discourse and analysis of the world. Why do children use to write with a pencil on piece of paper in order to learn. The drill typically starts with the children trying to
recreate elegant fonts in some shape or form which is decipherable for the teacher. You have to write “A” 500 times to get it right, ok? How would you write words when you cannot write alphabets? How would write sentences when you cannot write words? How will you write examinations if you cannot write sentences?

Is it the only way in which we can learn language? If we observe this in detail we see that only reason we ask them to write “a” 500 times in a notebook is because it comes from an era when there was no other technology to write. And this is the same learner who can converse well and answer questions, but yet we need them to write it down with their hands. It was the only possible solution. And generations of humans were trained using this method. So much so that most of us still think this is the only method for education. Any deviation from hand-written text is seen as a abomination. But typing on a computer provides us, and especially, young learners with cognitive offloading of immense task of holding a writing instrument and shaping an alphabet, a word, a sentence out of it. Children learn to type much much faster than they learn to write with a pen. And what is even more important is that the written text is in electronic form, which can be revised and shared with their peers and teachers. In hand written text there is no question of revision, the original takes too much effort to produce so there is no question of revising it.

one-pencil-per-child

Considering the amount of cognitive load the child has to undergo to produce decipherable alphabets, words and sentences in order to “write”, a thing which he can perfectly do orally, are the results worth the effort? Are there any studies which show that this is an efficient method? Yet is used everywhere without exceptions and we accept it meekly without challenge because this is how it was done in the past and someone in the past must have had good reason to use this hence, we should also use this. Papert calls this as “QWERTY Phenomena”. Somethings just get culturally embedded because the are
suited for an bygone era, the are like relics in the current era. And writing with pencil and paper is just one of them.

Now consider the question that was asked at the beginning of the post. Replace the computer with a pencil. The question then becomes,

“So, considering that the activity that you have designed requires a
pencil and a notebook. How can you scale it up to schools which have
millions of children?”

one-pencil-per-1000-child-cyan

Suddenly question seems rather bizzare and at the same time sotrivial. Of course you might say but the pencil and notebook is so much cheaper than the computer. Yes. It. Is. But if you consider that a well designed laptop like OLPC, can serve a learners for 5-6 years and can remain with them through the schooling years. Then calculations show the investment that we seek is rather modest. In general when something becomes more
common, it also becomes cheaper. Mobile phones provide an excellent proof for this argument. And it is not happening in some first world country but in our own. What has promoted a rapid growth in the number of mobile users? How do tariff plans compare
from 15 years back to now? How come something which was something exclusive for the rich and the famous, just a few years back, is now so common? It is hard to find a person without a phone these days. Even people who do not have access to electricity have a
phone, they get it charged from some place else. Now if some sociologist would have done some study regarding usefulness of mobile phones for communication, perhaps 20 years earlier, they might have had some statistics to show, but critics would have said,

“but the cost is too prohibitive; this is perhaps ok for a case study you seriously
think all (or most) of the people can have this; and people who cannot
read and write will be able to use this; people do not have
electricity and food to eat and you want to give them mobile phone?”

But look at where we are, because people found contextual and personal value in using a mobile, it became their personal assistant in communicating with others, an inherent human trait, they got it. With proliferation of the mobiles, the cost of hardware came down, the cost of tariffs came down, almost everyone could afford one now.

It is sensationalist to compare a pencil and laptop in terms of cost, but when you consider the kinds of learning that can happen over a computer there is simple no match. They are not different in degree but in kind. Note that I have used “can happen” instead of will happen. This is for a reason, a laptop can be used in a variety of ways in learning. Some of the ways can be subversive, disruptive of the traditional education system, and redefine radically the ways our children learn. But in most cases its subversion is tamed and is made submissive to the existing educational system. And computers are made to do what a teacher or a textbook will do in a traditional context. So it is blunted and made part of a system which the computer has the potential to alter radically.

Some people then cite “research studies” done with “computers”. These studies will typically groups “with” computers and “without” computers. Some tasks are given and then there are pre and post tests. They are looking at the submissive action set in a highly conservative educational system. Even if such studies show the use of computers in a positive light, all these studies are missing the point. They are just flogging a dead horse. The point that computers when used in the right way, the constructionist way, can change the way we learn in a fundamental way. There are many studies which “prove” the counter-point. That computers don’t improve “learning”. Typically children will have limited access both in terms of time and sharing it with more people. One computer shared by three people, one hour in a week. Even then children learn, with computers if
used correctly. Continuing with out example of the pencil, consider this: one pencil shared among three children, once a week! Seems absurd isn’t it? But this is what typically happens in the schools, children are not allowed to develop a personal relationship with one of the most powerful learning ideas that they can have access to. Access is limited and in most cases uninformed involving trivialisation of the learning ideas that can redefine learning.

one-computer-per-1000-child

Politics Science Education or Science Education Politics or Science Politics Education

I am rather not sure what should be the exact title of this
post. Apart from the two options above it could have been any other
combination of these three words. Because I would be talking about all
three of them in interdependent manner.

If someone tells you that education is or should be independent of politics they, I would say they are very naive in their view about society. Education in general and formalised education in particular, which is supported and implemented by state is about political ideology that we want our next generation to have. One of the Marxian critique of state formalised education is that it keeps the current hierarchical structures untouched in its approach and thus sustains them. Now when we come to science education we get a bit more involved about ideas.

Science by itself was at one point of time assumed to be value-neutral. This line of though can be seen in the essays that some of us wrote in the schools with titles like “Science: good or bad”. Typically the line of argument in such is that by itself science is neither good or bad, but how we put it to use is what determines whether it is good or bad. Examples to substantiate the arguments typically involve some horrific incidents like the atomic bomb on one hand and life saving drugs on the other hand. But by itself, science is not about good or bad values. It is assumed to be neutral in that sense (there are other notions of value-neutrality of science which we will consider later). Scientific thought and its products are considered above petty issues of society and indiduals, it seemed to be an quest for eternal truth. No one questioned the processes or products of science which were assumed to be the most noble, rational, logical and superior way of doing things. But this pretty picture about scientific enterprise was broken by Thomas Kuhn. What we were looking at so far is the “normative” idea of science. That is we create some ideals about science and work under the assumption that this is how actual science is or ought to be. What Kuhn in his seminal work titled The Structure of Scientific Revolution was to challenge such a normative view, instead he did a historical analysis of how science is actually done ans gave us a “descriptive” picture about science, which was based on historical facts. Keeping up the name of the book, it actually revolutionised the way we look at science.

Now keeping in mind this disctinction between “normative” and “descriptive” views is very important. This is not only true for science but also for all other forms of human endeavours. People often tend to confuse or combine the two or many times are not even aware of the difference.

After Kuhn’s groundbreaking work entire new view about science its processes and products emerged. Various aspects of the scientific enterprise which were initially thought about outside purview of science or not affecting science came in to spotlight. Science was dissected and deconstructed from various points of view. Over the next few decades these ideas emerged into full fledged disciplies on their own. Some very valid criticisms of the scientific enterprise were developed and agreed upon. For example, the idea that there exists “the scientific method” was serisously looked into and was found to be too naive. A modified view was adopted in this regard and most of philosophers of science agreed that this is too restrictive a view. Added to this the post-modernist views about science may seem strange and bizzare at times to the uninitiated. This led to what many call as the “science-wars” between scientific realists and postmodernists. The scientific realists who believe that the world described by science is the real world as it is, independent of what it might be. So in this view it implies that there is objective truth in science and the world it describes is real. This view also implies that there is something like “scientific method” and it role in creating true knowledge about the world is paramount. On the other hand postmodernist critics don’t necessarily agree with this view of the world. For example they question the very idea of objectivity of the scientific world-view. Deriving their own meaning into writings of Kuhn (which he didn’t agree to) they claimed that science itself is a social construct and has nothing to do with the real world. The apparent supremacy of “scientific-method” in creating knowledge or presenting us about the world-views is questioned. The entire scientific enterprise from processes to products was deciphered from dimensions of gender, sexual orientation, race and class. Now, when you are teaching about science to learners there should be an awareness about these issues. Some of the issues are usually overlooked or have a logical positivist nature in them. Many philosophers lament that though considerable change has happened in ideas regarding scientific enterprise especially in philosophy of science, it seems corresponding ideas in science education are not up to date. And this can be seen when you look at the science textbook with a critical focus.

With this background I will go into the reasons that made me write this post and the peculiar multi-title. It seems for post-modernists and some others that learning about politics of science is more important than learning science itself. And they feel this is the neutral view and there is nothing political about it. They look at science as an hierarchical enterprise where gender, class and race play the decisive role, hence everyone should know about it. I am not against sharing the fact with learners of science that there are other world-views, what I am against is to share only a peculiar world view which is shaped completely by one’s ideology and politcal stance rather than by actual contents. Many of the people don’t actually know science, yet they feel that they are fully justified to criticise it. And most of these people would fall on the left side of the political spectrum (at least that is what their self-image is). But the way I see it is that these same people are no different from the right-wingers who burn books without reading them. The pomos may think of themselves as intellectually superior to the tilak-sporting people but they are not. Such is the state of intellectuals that they feel threatened by exclusion of certain articles or inclusion of certain other ones in reading courses. They then use all their might to restore the “balance”. At the same time they also tell us only they have some esoteric knowledge about these issues which people like me cannot have. And no matter what I do I will never be able to do what they can. Perhaps they have super powers which I don’t know about, perhaps in their subjective world view the pigs can fly and this fact can be proven by using other methods than the scientific ones. Last point I want to make in this is inspite of all the criticims of science and its products it doesn’t stop these people from refraining use of these products and technologies! This is hypocrisy, they will curse the phone or the computer if it doesn’t work, what they perhaps don’t realise is that it might be working just that the pomos are not able to see it in their worldview.

A Piagetian Curriculum?

There are those who think about creating a “Piagetian curriculum” or “Piagetian teaching methods.” But to my mind these phrases and the activities they represent are contradictions in terms. I see Piaget as the theorist of learning without curriculum and the theorist of the kind of learning that happens without deliberate teaching. To turn him into the theorist of a new curriculum is to stand him on his head. – Seymour Papert, Mindstorms

 

Main purpose of the educational sector

The main purpose of the health sector is not to provide other sectors with workers in good health. By the same token, the main purpose of the educational sector is not to prepare students to take up an occupation in some other sector of the economy. In all human societies, health and education have an intrinsic value: the ability to enjoy years of good health, like the ability to acquire knowledge and culture, is one of the fundamental purposes of civilization.

via Thomas Piketty’s Capital in the 21st Century

Radical Openness – Scientific Research

“The more we’re getting into this the more it’s apparent this is a radical new way to scientific research. Traditional research is done in an institution with patent protection. IP protection and patents slows progress because it reduces collaboration and makes it harder to build on the work of others. Our project, we don’t have a central body. It’s the public, they’re the ones who get excited. Because we’re not beholden to shareholders we can create a community.”

via Glowing Plant| Singularity Hub.

I just hope that this project is successful and will create a new way of doing scientific research which will involve common people.

Sharing knowledge and learning collaboratively at schools

(This article was written for a college magazine.)

We have a vision for a better society in which the values of sharing and collaborating knowledge and technical know-how form an integral part. There are two aspects to this issue. One is why it should be done, and given the current social structure how it can be done. Though the why question is as important as the how one in this article we will try to focus more on how it can be done with aid of proper technology and what are the possible implications of this intervention to the citizens of the future.

The current education system does little to promote and impart the ideas of sharing knowledge with peers to the students who will be the future citizens. In our educational system it is more like each-one-for-oneself; if you help your peers you will be at a loss in the future. Another aspect is that the educational system by its nature is consumerist. By consumerist we mean that the schools system treat the students more like consumers, who are then passively fed in what has already been produced by others. There is no or little scope left for students to produce or construct anything meaningful. So the platform/technology which will address these issues should have the following qualities:

  • It should be based on principles of Free Software (see http://gnu.org/education).
  • It should allow for collaboration / sharing of knowledge.
  • It should allow for active, meaningful and collaborative production / construction contexts, through which students will learn.
  • It should give immediate feedback to the student, not the delayed one (year end) which the current school system has. This is essential as it makes children reflective about the work that they are doing.

Learning in the context of constructing some tangible thing is a philosophy of education proposed by Seymour Papert, called constructionism. Constructionist learning is inspired by the constructivist theory that individual learners construct mental models to understand the world around them. However, constructionism holds that learning can happen most effectively when people are also active in making tangible objects in the real world. A closely related term that you might have heard is that of constructivism, but there are differences though.

The potential for transforming classrooms in a revolutionary way is present in the constructionist way of learning, which the existing CBTs (computer based tutorials) do not challenge but reinforce. The advances in technology have made it possible now to implement constructionist ways of learning to masses. So where are the examples of this?

The Sugar learning platform  is just one such example which is specifically developed keeping in mind the above considerations. But the idea of constructionist learning is not limited only to using computers. displayed. The very idea of the platform is centered around the idea of constructionism. Though initially developed for OLPC (One Laptop Per Child) Project, now it can run on almost all computers. Learning in an environment where sharing knowledge is an inherent principle rather than an added externality provides the students with a whole new way of learning. Each activity on Sugar is designed keeping in mind the collaborative, construction context and immediate feedback principles.

The Sugar platform provides construction contexts from different areas to learn collaboratively like language, mathematics, science, drawing, music, games, programming, photography, audio and video recording among other things. For each of this activity can be done collaboratively by the students and can be shared with others. This also provides students to make meaningful connections between different concepts. In this context we have seen a strong urge in the children to share the knowledge and activities that they have with others, but in the current school system there is no or little provision for this. Sharing of activities provides context for feedback from peers, which in turn is fruitful in improving learning. Thus we see that the tools and time is ripe for changing our perspective towards education for a more inclusive and better society, whose core values are sharing of knowledge and collaboration.

There are pilot projects of Sugar running at many places across India, one is the Khairat Project which is running successfully for past 4 years at a primary tribal school of first generation learners near Mumbai, another one is at Merces School near Panaji in state of Goa.

Science, a humanistic approach

Science is an adventure of the whole human race to learn to live in and perhaps to love the universe in which they are. To be a part of it is to understand, to understand oneself, to begin to feel that there is a capacity within man far beyond what he felt he had, of an infinite extension of human possibilities . . .
I propose that science be taught at whatever level, from the lowest to the highest, in the humanistic way. It should be taught with a certain historical understanding , with a certain philosophical understanding , with a social understanding and a human understanding in the sense of the biography, the nature of the people who made this construction, the triumphs, the trials, the tribulations.

I. I. RABI
Nobel Laureate in Physics

via Project Physics Course, Unit 4 Light and Electromagnetism Preface

Do see the Project Physics Course which has come in Public Domain hosted at the Internet Archive, thanks to F.  James Rutherford.