A timeline created using h5p. The reference book used is Lev Tarasov – Basic Concepts of Quantum Mechanics.

Skip to content
#
physics

# A Short History of Initial Development of Quantum Mechanics

# Examples of physics quiz with H5P content type

# What is mass renormalization?

# Rotating Earth: the proofs or significance of Leon Foucault’s pendulum – Part 1

First, let us look at the philosophical reasons. In ancient Greek cosmology, there was a clear and insurmountable distinction between the celestial and the terrestrial. The celestial order and bodies were believed to be*perfect*, as opposed to the *imperfect *terrestrial. After watching and recording the uninterrupted waltz of the sky over many millennia, it was believed that the heavens were unchangeable and perfect. The observations revealed that there are two types of “stars”. First the so-called “fixed stars” do not change their positions relative to each other. That is to say, their angular separation remains the same. They move together as a group across the sky. Imagination coupled with a group of stars led to the conceiving of constellations. Different civilizations imagined different heroes, animals, objects in the sky. They formed stories about the constellations. These became entwined with cultures and their myths.

The second type of stars did change their positions with respect to other “fixed stars”. That is to say, they changed their angular distances with “fixed stars”. These stars, the planets, came to be called as “wandering stars” as opposed to the “fixed stars”.
# Science, a humanistic approach

# Flying Circus of Physics…

# Archimedes and the Law of Lever

A timeline created using h5p. The reference book used is Lev Tarasov – Basic Concepts of Quantum Mechanics.

This post has two examples from the same problem using H5P **multiple choice** and **fill in the blank** content types.

This content is released under Creative Commons BY SA 4.0 License

A simple explanation of mass renormalization:

The difficulties associated with an infinite rest mass can be successfully overcome in calculation of various effects with the help of

mass renormalizationwhich essentially consists in the following. Suppose that it is required to calculate a certain effect and an infinite rest mass appears in the calculations. The quantity obtained as a result of calculations is infinite and is consequently devoid of any physical meaning. In order to obtain a physically reasonable result, another calculation’ is carried out, in which all factors, except those associated with the phenomenon under consideration, are present. This calculation also includes an infinite rest mass and leads to an infinite result. Subtraction of the second infinite result from the first leads to the cancellation of infinite quantities associated with the rest mass. The remaining quantity is finite and characterizes the phenomenon being considered. Thus, we can get rid of the infinite rest mass and obtain physically reasonable results which are confirmed by experiment. Such a method is used, for example, to calculate the energy of an electric field.

– A. N. Matveev, Electricity and Magnetism, p. 16

In an earlier post, we had discussed proofs of the round shape of the Earth. This included some ancient and some modern proofs. There was, in general, a consensus that the shape of the Earth was spherical and not flat and the proofs were given since the time of ancient Greeks. Only in the middle ages, there seems to have been some doubt regarding the shape of the Earth. But amongst the learned people, there was never a doubt about the shape of the Earth. Counter-intuitive it may seem when you look at the near horizon, it is not **that** counter-intuitive. We can find direct proofs about it by looking around and observing keenly.

But the rotation of Earth proved to be a more difficult beast to tame and is highly counter-intuitive. Your daily experience does not tell you the Earth is rotating, rather intuition tells you that it is fixed and stationary. Though the idea of a moving Earth is not new, the general acceptance of the idea took a very long time. And even almost 350 years after Copernicus’ heliocentric model was accepted, a **direct proof** of Earth’s rotation was lacking. And this absence of definitive proof was not due to a lack of trying. Some of the greatest minds in science, mathematics and astronomy worked on this problem since Copernicus but were unable to solve it. This included likes of Galileo, Newton, Descartes, and host of incredibly talented mathematicians since the scientific revolution. Until Leon Foucaultin the mid-1800s provided not one but **two **direct proofs of the rotation of the Earth. In this series of posts, we will see how this happened.

When we say the movement of the Earth, we also have to distinguish between two motions that it has: first its motion about its orbit around the Sun, and second its rotational motion about its own axis. So what possible **observational proofs** or **direct** **evidence** will allow us to detect the two motions? In this post, we will explore how our ideas regarding these two motions of the Earth evolved over time and what type of proofs were given for and against it.

Even more, there was a simple geometrical fact directly opposed to the Earth’s annual motion around the Sun and there was nothing that could directly prove its diurnal rotation. (Mikhailov, 1975)

Let us consider the two components of Earth’s motion. The first is the movement around the Sun along the orbit. The simplest proof for this component of Earth’s motion is from the **parallax **that we can observe for distant stars. Parallax is the relative change in position of objects when they are viewed from different locations. The simplest example of this can be seen with our own eyes.

Straighten your hand, and hold your thumb out. Observe the thumb with both the eyes open. You will see your thumb at a specific location with respect to the background objects. Now close your left eye, and look at how the position of the thumb has changed with respect to the background objects. Now open the right eye, and close the left one. What we will see is a shift in the background of the thumb. This shift is related by simple geometry to the distance between our eyes, called the **baseline** in astronomical parlance. Thus even a distance of the order of a few centimetres causes parallax, then if it is assumed that Earth is moving around the Sun, it should definitely cause an observable parallax in the fixed stars. And this was precisely one of the major roadblock

Earth moving around an orbit raised mechanical objections that seemed even more serious in later ages; and it raised a great astronomical difficulty immediately. If the Earth moves in a vast orbit, the pattern of fixed stars should show parallax changes during the year. (Rogers, 1960)

The history of cosmic theories … may without exaggeration be called a history of collective obsessions and controlled schizophrenias.

– Arthur Koestler,The Sleepwalkers

Though it is widely believed that Copernicus was the first to suggest a moving Earth, it is not the case. One of the earliest proponents of the rotating Earth was a Greek philosopher named Aristarchus. One of the books by Heath on Aristarchus is indeed titled Copernicus of Antiquity (Aristarchus of Samos). A longer version of the book is **Aristarchus of Samos: The Ancient Copernicus**. In his model of the cosmos, Aristarchus imagined the Sun at the centre and the Earth and other planets revolving around it. At the time it was proposed, it was not received well. There were **philosophical** and **scientific** reasons for rejecting the model.

First, let us look at the philosophical reasons. In ancient Greek cosmology, there was a clear and insurmountable distinction between the celestial and the terrestrial. The celestial order and bodies were believed to be

The second type of stars did change their positions with respect to other “fixed stars”. That is to say, they changed their angular distances with “fixed stars”. These stars, the planets, came to be called as “wandering stars” as opposed to the “fixed stars”.

Ancient Greeks called these lights πλάνητες ἀστέρες (

, “wandering stars”) or simply πλανῆται (planētes asteres, “wanderers”),planētai^{}from which today’s word “planet” was derived.

Planet

So how does one make sense of these observations? For the fixed stars, the solution is simple and elegant. One observes the set of stars rising from the east and setting to the west. And this set of stars changes across the year (which can be evidenced by changing seasons around us). And this change was found to be cyclical. Year after year, with observations spanning centuries, we found that the stars seem to be embedded on inside of a **sphere**, and this sphere rotates at a **constant** speed. This “model” explains the observed phenomena of fixed stars very well.

The unchanging nature of this cyclical process observed, as opposed to the chaotic nature on Earth, perhaps led to the idea that celestial phenomena are **perfect**. Also, the religious notion of associating the heavens with gods, perhaps added to them being perfect. So, in the case of perfect unchanging heavens, the speeds of celestial bodies, as evidenced by observing the celestial sphere consisting of “fixed stars” was also to be **constant**. And since celestial objects were considered as perfect, the two geometrical objects that were regarded as perfect the sphere and the circle were included in the scheme of heavens. To explain the observation of motion of stars through the sky, their rising from the east and setting to the west, it was hypothesized that the stars are embedded on the inside of a sphere, and this sphere rotates at a constant speed. We being fixed on the Earth, observe this rotating sphere as the rising and setting of stars. This model of the world works perfectly and formed the template for explaining the “wandering stars” also.

These two ideas, namely celestial objects placed on a circle/sphere rotating with constant speed, formed the philosophical basis of Greek cosmology which would dominate the Western world for nearly two thousand years. And why would one consider the Earth to be stationary? This is perhaps because the idea is highly counter-intuitive. All our experience tells us that the Earth **is** stationary. The metaphors that we use like rock-solid refer to an idea of immovable and rigid Earth. Even speculating about movement of Earth, there is no need for something that is so obviously not there. But as the history of science shows us, most of the scientific ideas, with a few exceptions, are highly counter-intuitive. And that the Earth seems to move and rotate is one of the most counter-intuitive thing that we experience in nature.

The celestial observations were correlated with happenings on the Earth. One could, for example, predict seasons as per the rising of certain stars, as was done by ancient Egyptians. Tables containing continuous observations of stars and planets covering several centuries were created and maintained by the Babylonian astronomers. It was this wealth of astronomical data, continuously covering several centuries, that became available to the ancient Greek astronomers as a result of Alexander’s conquest of Persia. Having such a wealth of data led to the formation of better theories, but with the two constraints of circles/spheres and constant speeds mentioned above.

With this background, next, we will consider the progress in these ideas.

A stabilised image of the Milky Way as seen from a moving Earth.

Science is an adventure of the whole human race to learn to live in and perhaps to love the universe in which they are. To be a part of it is to understand, to understand oneself, to begin to feel that there is a capacity within man far beyond what he felt he had, of an infinite extension of human possibilities . . .

I propose that science be taught at whatever level, from the lowest to the highest, in the humanistic way. It should be taught with a certain historical understanding , with a certain philosophical understanding , with a social understanding and a human understanding in the sense of the biography, the nature of the people who made this construction, the triumphs, the trials, the tribulations.

I. I. RABI

Nobel Laureate in Physics

via Project Physics Course, Unit 4 Light and Electromagnetism *Preface*

Do see the Project Physics Course which has come in Public Domain hosted at the Internet Archive, thanks to F. James Rutherford.

The Flying Circus of Physics began one dark and dreary night in 1968 while I was a graduate student at the University of Maryland. Well, actually, to most graduate students nearly all nights are dark and dreary, but I mean that that particular night was really dark and dreary. I was a full-time teaching assistant, and earlier in the day I had given a quiz to Sharon, one of my students. She did badly and at the end turned to me with the challenge, “What has anything of this to do with my life?”

I jumped to respond, “Sharon, this is physics! This has everything to do with your life!”

As she turned more to face me, with eyes and voice both tightened, she said in measured pace, “Give me some examples.”

I thought and thought but could not come up with a single one. I had spent at least six years studying physics and I could not come up with even a single example.That night I realized that the trouble with Sharon was actually the trouble with me: This thing called physics was something people did in a physics building, not something that was connected with the real world of Sharon or me. So, I decided to collect some real-world examples and, to catch her attention, I called the collection The Flying Circus of Physics.

Archimedes & The Law Of The Lever

The lever presents us with one of the most simple of machines that humans have invented. In fact the lever is one of the six simple machines, which are the building blocks of any complicated, mechanical equipment that we produce. The total six simple machines are:

▪ Lever

▪ Wheel and axle

▪ Pulley

▪ Inclined plane

▪ Wedge

▪ Screw

Simple machines are devices which use mechanical advantage to multiply force. Simple machines can be used to increase the output force, this is at the cost of a proportional decrease in the distance moved by the load. With the mechanical advantage that you get in a lever, you can lift large loads, with application of much less force. We use levers in a variety of ways in our daily life. Just to name a few, the weighing balance, see-saw, even when you lift a weight with your own hand! How many can you identify?

But being a simple machine does not mean that the secret of it can be derived very easily. Just given with a lever, some weights and no other knowledge it is hard for us to derive the mathematical expression for the law of lever. Whereas the Newtonian mechanics gives us a proof, we will see how this proof was presented first. The proof is by Archimedes. Archimedes was the first person to reason and build a theory about the lever, amongst many others things he did besides crying Eureka!! We will sketch the outline of his proof about the law of lever.

If two weights w, W are placed on a horizontal weightless stick, which rests on a support called the fulcrum. One of the following three scenarios will occur. Either the stick will tilt towards the right or the left side, otherwise it will remain horizontal. When the stick remains horizontal it is said to be in equilibrium position. Archimedes considered the question:

“If W is at a distance D from the fulcrum and w is at a distance d from the fulcrum, what condition on W, D, w, d corresponds to equilibrium?”

The answer known to almost all students of physics is that the products wd and WD should be equal. Archimedes did not give a proof to this law in this form. For it is said he would have been offended by multiplying two entirely different quantities such as weight and length. The balance is expressed by him in terms of equality of two proportions W : d = D : w. The statement is that the weights balance at distances inversely proportional to their magnitudes.

Archimedes made some assumptions, which were supposed to be self evident. The assumptions are:

- Equal weights at equal distances from the fulcrum balance. Equal weights at unequal distances do not balance, but the weight at the greater distance tilts the lever towards itself.
- When two weights are balancing and we add some weight to one of the weights, the weights no longer balance. The weight to which we add goes down.
- When two weights balance, we take some weight away from one, the weights no longer balance. The side holding the weight we did not change goes down.

Archimedes uses this assumptions to prove propositions which lead us to the law of the lever. The point in the proofs is that the assumptions should not contradict each other.

Proposition 1: Weights that balance at equal distances from the fulcrum are equal.

Proof: If they are not equal, remove the greater weight difference of the two weights. We have now two equal weights at equal distances from the fulcrum. But according to assumption 3 they do not balance. This contradicts assumption 1. Hence the proof.

Proposition 2: Unequal weights at equal distances do not balance, but the side holding the higher weight goes down.

Proof: Take out the difference between weights, by assumption 1, the remaining two weights balance. If we put back the weight that we have taken, then by assumption 2 weights now do not balance.

Proposition 3: Unequal weights balance at unequal distances from the fulcrum, the heavier weights being at the shorter distance.

Proof: Suppose that the heavier weight is W which is placed at A, and lighter weight w placed at B and the fulcrum is at C, consider the case that they balance each other. Remove W – w from the heavier weight W, thus we have two equal weights. Now by assumption 3, the remaining weights do not balance, but w goes down.

But this is not possible for the following reasons:

Either AC = CB, AC greater than CB, or AC less than CB. Archimedes rules out the first two possibilities. If AC = CB, by assumption 1 the remaining weights balance. If AC is greater than CB then again by assumption 1 weight at A will go down. Thus AC must be less than CB.

Proposition 4: If two equal weights have different centers of gravity, then the center of gravity of the two together is the midpoint of the line segment joining their centers of gravity.

[Archimedes does not define the term “center of gravity”, but approaches the term axiomatically. For a mathematical definition knowledge of integral calculus is required. But we can still understand the term in physical terms. We can assume that all the weight is concentrated at the center of gravity. Another ways is to visualize that the entire weight acts as if it is located at one point, which we know as centre of gravity. ]

Proof: Let the equal weights be w and W, with centers of gravity located at A and B. Let M be the midpoint of the segment AB. Assume that the weights balance at C, a point different than M.

The distance AC is not equal to the distance CB. Hence by Assumption 1 the weights do not balance each other, no matter how C is chosen, as long as it is different from M. This implies that M must be the balancing point.

Here a tacit assumption is made that any two weights have a center of gravity, that is, a balancing point. It is a restatement of Assumption 1 in terms of center of gravity.

Corollary: If an even number of equal weights have their centers of gravity situated along a straight line such that the distances between the consecutive weights are all equal. Then the centre of gravity of the entire system is located on the midpoint of the line segment joining the centers of gravity of the two weights at the middle.

The figure below illustrates the corollary. The center of gravity of the six weights is at C.

Proposition 5: Commensurable weights balance at distances from the fulcrum that are inversely proportional to the magnitudes of the weights. More precisely, if commensurable weights W and w are at distances D and d form the fulcrum, then:

D/d = (1/W)/(1/w) = w/W

[By commensurable it is meant that the ratio of w/W is rational, i.e. there is a third number m such that W = pm, and w = qm and w/W = q/p, and p and q are whole numbers.]

Proof: For convenience let us take a specific case let the ratio of the weights be known, lets say 2:5. So that w/W = 2/5. Let w and W be located at A and B. Let M be their balancing point. What is needed for the proof is that AM : BM = 5:2.

AM/BM = [1/2] / [1/5] = 5/2

We cut the segment AB in to 5 + 2 = 7 equal parts. Divide the weight W into 2*5 = 10 equal parts, and place 5 of them at the midpoints of the five sections just to the right of B, one in each section and five of them in congruent sections to the left of B. Similarly divide w, into 2*2 = 4 equal parts and place 2 of them on the left of A at the and 2 of them to the right of A.

Thus we have a collection of 10 weights each W/10, whose centre of gravity is as same as that of W i.e. B. Similarly the centre of gravity of the w/6 weights is same as that of w, i.e. A. We now have a system of 14 equal weights, which are equally spaced. This collection of 14 weights by the corollary to Proposition 4 balances around the midpoint of the segment holding the 14 weights. This implies the ratio of the lever arms is 5:2, since AM has 2 little weights, and BM has 5 of them. This completes the proof.

Proposition 6: Incommensurable weights balance at distances inversely proportional to their magnitudes.

Proof: Let the weights be W and w at respective distances D and d from the fulcrum. Assume that WD = wd and that the two weights do not balance each other. Assume that weight W goes down.

Remove a small amount of weight from W to obtain W’ such that W’ still goes down but W’ and w are commensurable. Since W’D < wd, W’ rises. This contradiction – that both W’ rises and goes down – proves the proposition.

Is that what prompted him to say

“Give me a place to stand and with a lever I will move the whole world.”

Given the things that he asks for i.e. a place to stand and a lever, will a single person be able to lift the earth?

Let us do some order of magnitude physics for this. We assume that we have a strong rigid rod which will act as lever, which is sufficiently long. Lets say that we have a strong person of who can apply a force of $10^3 N$. We know that the weight of earth is $10^{25} N$. We then calculate in order to displace the earth by 1 cm, how much distance Archimedes will have to move. So that $ \frac{10^{25} \, N}{ 10^3 N} \times 1\, cm \, = \, 10^{22} \,cm}$. Now $10^{22} \,cm \, = \, 10^{20} \, m$. This is too large a distance. So even if Archimedes moved at an fantastic rate of 100 m/s it would still take $10^{18} \, s $ to complete the arc of $10^{20} \, m$. This is equal to $ 3 \times 10^{10}$ years or 3 million years. So to do this fantastic job, Archimedes would have to be incredibly powerful, supplying $10^3 \, N$ force for such long, and also should have a fantastic age of 3 million years!!

But anyways Archimedes was a great man, no doubt about that. Archimedes is referred to as greatest mathematician, physicist and engineer of the antiquity. We will get to other wonderful discoveries of the Archimedes soon…

Mach gives albeit a somewhat different account of the derivation of this law.

References:

Archimedes: What Did He Do Besides Crying Eureka?

Sherman Stein

The Science of Mechanics

Ernst Mach

PS: Typing math without LaTeX is a pain….

PPS: Finally \ \LaTeX \ on the blog \ \ldots \