Reflections on Liping Ma’s Work

Liping Ma’s book Knowing and teaching elementary mathematics has been very influential in Mathematics Education circles. This is a short summary of the book and my reflections on it.

Introduction

Liping Ma in her work  compares the teaching of mathematics in the American and the Chinese schools. Typically it is found that the American students are out performed by their Chinese counterparts in mathematical exams. This fact would lead us to believe that the Chinese teachers are better `educated’ than the U.S. teachers and the better performance is a straight result of this fact. But when we see at the actual schooling the teachers undergo in the two countries we find a large difference. Whereas the U.S. teachers are typically graduates with 16-18 years of formal schooling, the typical Chinese maths teacher has about only 11-12 years of schooling. So how can a lower `educated’ teacher produce better results than a more educated one? This is sort of the gist of Ma’s work which has been described in the book. The book after exposing the in-competencies of the U.S. teachers also gives the remedies that can lift their performance.

In the course of her work Ma identifies the deeper mathematical and procedural understanding present, called the profound understanding of fundamental mathematics [PUFM] in the Chinese teachers, which is mostly absent in the American teachers. Also the “pedagogical content knowledge” of the Chinese teachers is different and better than that of the U.S. teachers. A teacher with PUFM “is not only aware of the conceptual structure and the basic attitudes of mathematics inherent in elementary mathematics, but is able to teach them to students.” The situation of the two teacher is that the U.S. teachers have a shallow understanding of a large number of mathematical structures including the advanced ones, but the Chinese teachers have a deeper understanding of the elementary concepts involved in mathematics. The point where the PUFM is attained in the Chinese teachers is addressed. this Also the Chinese education system so structured that it allows cooperation and interaction among the junior and senior teachers.

Methodology

The study was conducted by using the interview questions in Teacher Education and Learning to Teach Study [TELT] developed by Deborah Ball. These questions were designed to probe teacher’s knowledge of mathematics in the context of common things that teachers do in course of teaching. The four common topics that were tested for by the TELT were: subtraction, multiplication, division by fractions and the relationship between area and perimeter. Due to these diverse topics in the questionnaire the teachers subject knowledge at both conceptual and procedural levels at the elementary level could be judged quite comprehensively. The teacher’s response to a particular question could be used to judge the level of understanding the teacher has on the given subject topic.

Sample

The sample for this study was composed of two set of teachers. One from the U.S., and another from China. There were 23 U.S. teachers, who were supposed to be above average. Out of these 23, 12 had an experience of 1 year of teaching, and the rest 11 had average teaching experience of 11 years. In China 72 teachers were selected, who came from diverse nature of schools.In these 72, 40 had experience of less than 5 years of teaching, 24 had more than 5 years of teaching experience, and the remaining 8 had taught for more than 18 years average. Each teacher was interviewed for the conceptual and procedural understanding for the four topics mentioned.

We now take a look at the various problems posed to the teachers and their typical responses.

Subtraction with Regrouping

The problem posed to the teachers in this topic was:

Lets spend some time thinking about one particular topic that you may work with when you teach, subtraction and regrouping. Look at these questions:
62
– 49
= 13

How would you approach these problems if you were teaching second grade? What would you say pupils would need to understand or be able to do before they could start learning subtraction with regrouping?

Response

Although this problem appears to be simple and very elementary not all teachers were aware of the conceptual scheme behind subtraction by regrouping. Seventy seven percent of the U.S. teachers and 14% of U.S. teacher had only the procedural knowledge of the topic. The understanding of these teachers was limited to just taking and changing steps. This limitation was evident in their capacity to promote conceptual learning in the class room. Also the various levels of conceptual understanding were also displayed. Whereas the U.S. teachers explained the procedure as regrouping the minuend and told that during the teaching they would point out the “exchanging” aspect underlying the “changing” step. On the other hand the Chinese teachers used subtraction in computations as decomposing a higher value unit, and many of them also used non-standard methods of regrouping and their relations with standard methods.

Also most of the Chinese teachers mentioned that after teaching this to students they would like to have a class discussion, so as to clarify the concepts.

Multidigit Multiplication

The problem posed to the teachers in this topic was:

Some sixth-grade teachers noticed that several of their students were making the same mistake in multiplying large numbers. In trying to calculate:
123
x 645
13

the students were forgetting to “move the numbers” (i.e. the partial products) over each line.}
They were doing this Instead of this
123 123
x 64 x 64
615 615
492 492
738 738
1845 79335

While these teachers agreed that this was a problem, they did not agree on what to do about it. What would you do if you were teaching the sixth grade and you noticed that several of your students were doing this?}

Response

Most of the teachers agreed that this was a genuine problem in students understanding than just careless shifting of digits, meant for addition. But different teachers had different views about the error made by the student. The problem in the students understanding as seen by the teachers were reflections of their own knowledge of the subject matter. For most of the U.S. teachers the knowledge was procedural, so they reflected on them on similar lines when they were asked to. On the other hand the Chinese teachers displayed a conceptual understanding of the multidigit multiplication. The explanation and the algorithm used by the Chinese teachers were thorough and many times novel.

Division by Fractions

The problem posed to the teachers in this topic was:

People seem to have different approaches to solving problems involving division with fractions. How do you solve a problem like this one?

1/(3/4) / 1/2 = ??

Imagine that you are teaching division with fractions. To make this meaningful for kids, sometimes many teachers try to do is relate mathematics to other things. Sometimes they try to come up with real-world situations or story-problems to show the application of some particular piece of content. What would you say would be good story or model for 1/(3/4) / 1/2 ?

Response

As in the previous two cases the U.S. teachers had a very weak knowledge of the subject matter. Only 43% of the U.S. teachers were able to calculate the fraction correctly and none of them showed the understanding of the rationale underlying their calculations. Only one teacher was successful in generating an illustration for the correct representation of the given problem. On the other hand all the Chinese teachers did the computational part correctly, and a few teachers were also able to explain the rationale behind the calculations. Also in addition to this most of the Chinese teachers were able to generate at least one correct representation of the problem. In addition to this the Chinese teachers were able to generate representational problems with a variety of subjects and ideas, which in turn were based on their through understanding of the subject matter.

Division by Fractions

The problem posed to the teachers in this topic was:

Imagine that one of your students comes to the class very excited. She tells you that she has figured out a theory that you never told to the class. She explains that she has discovered the perimeter of a closed figure increases, the area also increases. She shows you a picture to prove what she is doing:

Example of the student:

How would you respond to this student?

Response

In this problem task there were two aspects of the subject matter knowledge which contributed substantially to successful approach; knowledge of topics related to the idea and mathematical attitudes. The absence or presence of attitudes was a major factor in success

The problems given to the teachers are of the elementary, but to understand them and explain them [what Ma is asking] one needs a profound understanding of basic principles that underly these elementary mathematical operations. This very fact is reflected in the response of the Chinese and the U.S. teachers. The same pattern of Chinese teachers outperforming U.S. teachers is repeated in all four topics. The reason for the better performance of the Chinese teachers is their profound understanding of fundamental mathematics or PUFM. We now turn to the topic of PUFM and explore what is meant by it and when it is attained.

PUFM

According to Ma PUFM is “more than a sound conceptual understanding of elementary mathematics — it is the awareness of the conceptual structure and the basic attitudes of mathematics inherent in elementary mathematics and the ability to provide a foundation for that conceptual structure and instill those basic attitudes in students. A profound understanding of mathematics has breadth, depth, and thoroughness. Breadth of understanding is the capacity to connect topic with topics of similar or less conceptual power. Depth of the understanding is the capacity to connect a topic with those of greater conceptual power. Thoroughness is the capacity to connect all these topics.”

The teacher who possesses PUFM has connectedness, knows multiple ways of expressing same thing, revisits and reinforces same ideas and has a longitudinal coherence. We will elaborate on these key ideas of PUFM in brief.

Connectedness: By connectedness being present in a teacher it is meant that there is an intention in the teacher to connect mathematical procedures and concepts. When this is used in teaching it will enable students to learn a unified body of knowledge, instead of learning isolated topics.

Multiple Perspectives: In order to have a flexible understanding of the concepts involved, one must be able to analyze and solve problems in multiple ways, and to provide explanations of various approaches to a problem. A teacher with PUFM will provide multiple ways to solve and understand a given problem, so that the understanding in the students is deeper.

Basic Ideas: The teachers having PUFM display mathematical attitudes and are particularly aware of the powerful and simple concepts of mathematics. By revisiting these ideas again and again they are reinforced. But focusing on this students are not merely encouraged to approach the problems, but are guided to conduct real mathematical activity.

Longitudinal Coherence: By longitudinal coherence in the teachers having PUFM it is meant that the teacher has a complete markup of the syllabus and the content for the various grades of the elementary mathematics. If one does have an idea of what the students have already learnt in the earlier grades, then that knowledge of the students can be used effectively. On the other hand if it is known what the students will be learning in the higher grades, the treatment in the lower grades can be such that it is suitable and effective later.

PUFM – Attainment

Since the presence of PUFM in the Chinese teachers makes them different from their U.S. counterparts, it is essential to have a knowledge of how the PUFM is developed and attained in the Chinese teachers. For this Ma did survey of two additional groups. One was ninth grade students, and the other was that of pre-service teachers. Both groups has conceptual understanding of the four problems. The preservice teachers also showed a concern for teaching and learning, but both groups did not show PUFM. Ma also interviewed the Chinese teachers who had PUFM, and explored their acquisition of mathematical knowledge. The teachers with PUFM mentioned several factors for their acquisition of mathematical knowledge. These factors include:

  • Learning from colleagues
  • Learning mathematics from students.
  • Learning mathematics by doing problems.
  • Teaching
  • Teaching round by round.
  • Studying teaching materials extensively.

The Chinese teachers during the summers and at the beginning of the school terms , studied the Teaching and Learning Framework document thoroughly. The text book to be followed is the most studied by the teachers. The text book is also studied and discussed during the school year. Comparatively little time is devoted to studying teacher’s manuals. So the conclusion of the study is that the Chinese teachers have a base for PUFM from their school education itself. But the PUFM matures and develops during their actual teaching driven by a concern of what to teach and how to teach it. This development of PUFM is well supported by their colleagues and the study materials that they have. Thus the cultural difference in the Chinese and U.S. educational systems also plays a part in this.

Conclusions

One of the most obvious outcomes of this study is the fact that the Chinese elementary teachers are much better equipped conceptually than their U.S. counterparts to teach mathematics at that level. The Chinese teachers show a deeper understanding of the subject matter and have a flexible understanding of the subject. But Ma has attempted to give the plausible explanations for this difference in terms of the PUFM, which is developed and matured in the Chinese teachers, but almost absent in the U.S. teachers. This difference in the respective teachers of the two countries is reflected in the performance of students at any given level. So that if one really wants to improve the mathematics learning for the students, the teachers also need to be well equipped with the knowledge of fundamental and elementary mathematics. The problems of teacher’s knowledge development and that of student learning are thus related.

In China when the perspective teachers are still students, they achieve the mathematical competence. When they attain the teacher learning programs, this mathematical competence is connected to primary concern about teaching and learning school mathematics. The final phase in this is when the teachers actually teach, it is here where they develop teacher’s subject knowledge.  Thus we see that good elementary education of the perspective teachers themselves heralds their growth as teachers with PUFM. Thus in China good teachers at the elementary level, make good students, who in turn can become good teachers themselves, and a cycle is formed. In case of U.S. it seems the opposite is true, poor elementary mathematics education, provided by low-quality teachers hinders likely development of mathematical competence in students at the elementary level. Also most of the teacher education programs in the U.S. focus on How to teach mathematics? rather than on the mathematics itself. After the training the teachers are expected to know how to teach and what to teach, they are also not expected to study anymore. All this leads to formation of a teacher who is bound in the given framework, not being able to develop PUFM as required.

Also the fact that is commonly believed that elementary mathematics is basic, superficial and commonly understood is denied by this study. The study definitively shows that elementary mathematics is not superficial at all, and anyone who teaches it has to study it in a comprehensive way. So for the attainment of PUFM in the U.S. teachers and to improve the mathematics education their Ma has given some suggestions which need to be implemented.

Ma suggests that the two problems of improving the teacher knowledge and student learning are interdependent, so that they both should be addressed simultaneously. This is a way to enter the cyclic process of development of mathematical competencies in the teachers. In the U.S. there is a lack of interaction between study of mathematics taught and study of how to teach it. The text books should be also read, studied and discussed by the teachers themselves as they will be using it in teaching in the class room. This will enable the U.S. teachers to have clear idea of what to teach and how to teach it thoughtfully. The perspective teachers can develop PUFM at the college level, and this can be used as the entry point in the cycle of developing the mathematical competency in them. Teachers should use text books and teachers manuals in an effective way. For this the teacher should recognize its significance and have time and energy for the careful study of manuals. The class room practice of the Chinese teachers is text book based, but not confined to text books. Again here the emphasis is laid on the teacher’s understanding of the subject matter. A teacher with PUFM will be able to choose materials from a text book and present them in intelligible ways in the class room. To put the conclusions in a compact form we can say that the content knowledge of the teachers makes the difference.

Reflections

The study done by Ma and its results have created a huge following in the U.S. Mathematics Education circles and has been termed as `enlightening’. The study diagnoses the problems in the U.S. treatment of elementary mathematics vis-a-vis Chinese one. In the work Ma glorifies the Chinese teachers and educational system as against `low quality’ American teachers and educational system. As said in the foreword of the book by Shulman the work is cited by the people on both sides of the math wars. This book has done the same thing to the U.S. Mathematics Education circles what the Sputnik in the late 1950’s to the U.S. policies on science education. During that time the Russians who were supposed to be technically inferior to the U.S. suddenly launched the Sputnik, there by creating a wave of disgust in the U.S. This was peaked in the Kennedy’s announcement of sending an American on moon before the 1970’s. The aftermath of this was to create `Scientific Americans’, with efforts directed at creating a scientific base in the U.S. right from the school. Similarly the case of Ma’s study is another expos\’e, this time in terms of elementary mathematics. It might not have mattered so much if the study was performed entirely with U.S. teachers [Have not studies of this kind ever done before?]. But the very fact that the Americans are apparently behind the Chinese is a matter of worry. This is a situation that needs to be rectified. This fame of this book is more about politics and funding about education than about math. So no wonder that all the people involved in Mathematics Education in the U.S. [and others elsewhere following them] are citing Ma’s work for changing the situation. Citing work of which shows the Americans on lower grounds may also be able to get you you funds which otherwise probably you would not have got. Now the guess is that the aim is to create `Mathematical Americans’ this time so as to overcome the Chinese challenge.

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates.

Advertisements

About The Mitr

I am The Mitr, The Friend
This entry was posted in education, mathematics, mathematics education, politics and tagged , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s